Knowledge Agora



Similar Articles

Title The Supported Boro-Additive Effect for the Selective Recovery of Dy Elements from Rare-Earth-Elements-Based Magnets
ID_Doc 10048
Authors Park, S; Kim, DK; Hussain, J; Song, M; Kim, TS
Title The Supported Boro-Additive Effect for the Selective Recovery of Dy Elements from Rare-Earth-Elements-Based Magnets
Year 2022
Published Materials, 15.0, 9
Abstract Liquid metal extraction (LME) for recycling rare-earth elements from magnets is studied, in the present study, to examine its suitability as an environmentally friendly alternative for a circular economy. While Nd (neodymium) extraction efficiency can easily reach almost 100%, based on the high reactivity of Mg (magnesium), Dy (dysprosium) extraction has been limited because of the Dy-Fe intermetallic phase as the main extractive bottleneck. In the present paper, the boro-additive effect is designed thermodynamically and examined in the ternary and quinary systems to improve the selectivity of recovery. Based on the strong chemical affinity between B (boron) and Fe, the effect of excess boron, which is produced by the depletion of B in FeB by Mg, successfully resulted in the formation of Fe2B instead of Dy-Fe bonding. However, the growth of the Fe2B layer, which is the reason for the isolated Mg, leads to the production of other byproducts, rare-earth borides (RB4, R = Nd and Dy), as the side effect. By adjusting the ratio of FeB, the extraction efficiency of Dy over 12 h with FeB addition is improved to 80%, which is almost the same extraction efficiency of the conventional LME process over 24 h.
PDF https://www.mdpi.com/1996-1944/15/9/3032/pdf?version=1650611367

Similar Articles

ID Score Article
3987 Briao, GD; da Silva, MG; Vieira, MGA Adsorption potential for the concentration and recovery of rare earth metals from NdFeB magnet scrap in the hydrometallurgical route: A review in a circular economy approach(2022)
19849 Yadav, J; Sarker, SK; Bruckard, W; Jegatheesan, V; Haque, N; Singh, N; Pramanik, BK Greening the supply chain: Sustainable approaches for rare earth element recovery from neodymium iron boron magnet waste(2024)Journal Of Environmental Chemical Engineering, 12.0, 4
10067 Zhang, JK; Anawati, J; Yao, YX; Azimi, G Aeriometallurgical Extraction of Rare Earth Elements from a NdFeB Magnet Utilizing Supercritical Fluids(2018)Acs Sustainable Chemistry & Engineering, 6.0, 12
22567 Patil, AB; Thalmann, N; Torrent, L; Tarik, M; Struis, RPWJ; Ludwig, C Surfactant-based enrichment of rare earth elements from NdFeB magnet e-waste: Optimisation of cloud formation and rare earths extraction(2023)
21216 Patil, AB; Struis, RPWJ; Testino, A; Ludwig, C Extraction of Rare Earth Metals: The New Thermodynamic Considerations Toward Process Hydrometallurgy(2021)
Scroll