Knowledge Agora



Similar Articles

Title Aeriometallurgical Extraction of Rare Earth Elements from a NdFeB Magnet Utilizing Supercritical Fluids
ID_Doc 10067
Authors Zhang, JK; Anawati, J; Yao, YX; Azimi, G
Title Aeriometallurgical Extraction of Rare Earth Elements from a NdFeB Magnet Utilizing Supercritical Fluids
Year 2018
Published Acs Sustainable Chemistry & Engineering, 6.0, 12
Abstract There is a global need for efficient and environmentally sustainable processes to close the life cycle loop of waste electrical and electronic equipment (WEEE) through recycling. Conventional WEEE recycling processes are based upon pyrometallurgy or hydrometallurgy. The former is energy-intensive and generates greenhouse gas (GHG) emissions, while the latter relies on large volumes of acids and organic solvents, thus generating hazardous wastes. Here, a novel "aeriometallurgical" process was developed to recycle critical rare earth elements, namely, neodymium (Nd), praseodymium (Pr), and dysprosium (Dy), from postconsumer NdFeB magnets utilized in wind turbines. The new process utilizes supercritical CO2 as the solvent, which is safe, inert, and abundant, along with the tributyl-phosphate nitric acid (TBP-HNO3) chelating agent and 2 wt % methanol as a cosolvent. Nd (94%), Pr (91%), and Dy (98%) extraction was achieved with only 62% iron (Fe) coextraction and minimal waste generation. Fundamental investigations into the extraction mechanism demonstrated that metal ion charge has an important impact on the extraction efficiency. Fundamental investigations indicate that extraction proceeds by corrosion of the magnet particle's surface layer. This work demonstrates that supercritical fluid extraction would find widespread applicability as a cleaner, a more sustainable option to recycle value metals from end-of-life products to enable the circular economy.
PDF

Similar Articles

ID Score Article
22567 Patil, AB; Thalmann, N; Torrent, L; Tarik, M; Struis, RPWJ; Ludwig, C Surfactant-based enrichment of rare earth elements from NdFeB magnet e-waste: Optimisation of cloud formation and rare earths extraction(2023)
7455 Zhang, JK; Anawati, J; Yao, YX; Azimi, G Supercritical Fluid Extraction for Urban Mining of Rare Earth Elements(2019)
19849 Yadav, J; Sarker, SK; Bruckard, W; Jegatheesan, V; Haque, N; Singh, N; Pramanik, BK Greening the supply chain: Sustainable approaches for rare earth element recovery from neodymium iron boron magnet waste(2024)Journal Of Environmental Chemical Engineering, 12.0, 4
21216 Patil, AB; Struis, RPWJ; Testino, A; Ludwig, C Extraction of Rare Earth Metals: The New Thermodynamic Considerations Toward Process Hydrometallurgy(2021)
63974 Cherkezova-Zheleva, Z; Burada, M; Sobetkii, AE; Paneva, D; Fironda, SA; Piticescu, RR Green and Sustainable Rare Earth Element Recycling and Reuse from End-of-Life Permanent Magnets(2024)Metals, 14, 6
3987 Briao, GD; da Silva, MG; Vieira, MGA Adsorption potential for the concentration and recovery of rare earth metals from NdFeB magnet scrap in the hydrometallurgical route: A review in a circular economy approach(2022)
5340 Diehl, O; Schönfeldt, M; Brouwer, E; Dirks, A; Rachut, K; Gassmann, J; Güth, K; Buckow, A; Gauss, R; Stauber, R; Gutfleisch, O Towards an Alloy Recycling of Nd-Fe-B Permanent Magnets in a Circular Economy(2018)Journal Of Sustainable Metallurgy, 4, 2
61858 Kaya, M An overview of NdFeB magnets recycling technologies(2024)
14985 Bolis, K; Goulart, GS; Krohling, AC; Mendonça, R; Fernandez-Outon, LE; Ardisson, JD Structural and Magnetic Characterization of Nd-Pr-Fe-B Sintered Magnet Machining Wastes(2023)Acs Omega, 8, 13
10048 Park, S; Kim, DK; Hussain, J; Song, M; Kim, TS The Supported Boro-Additive Effect for the Selective Recovery of Dy Elements from Rare-Earth-Elements-Based Magnets(2022)Materials, 15.0, 9
Scroll