Knowledge Agora



Similar Articles

Title Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse
ID_Doc 10069
Authors Stoknes, K; Scholwin, F; Krzesinski, W; Wojciechowska, E; Jasinska, A
Title Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse
Year 2016
Published
Abstract At urban locations certain challenges are concentrated: organic Waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. (C) 2016 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
5783 Stoknes, K; Wojciechowska, E; Jasinska, A; Gulliksen, A; Tesfamichael, AA Growing vegetables in the circular economy; cultivation of tomatoes on green waste compost and food waste digestate(2018)
29025 Antoniou, N; Monlau, F; Sambusiti, C; Ficara, E; Barakat, A; Zabaniotou, A Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery(2019)
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
3603 Dhungana, B; Lohani, SP; Marsolek, M Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals(2022)Sustainability, 14, 6
10064 Caruso, MC; Braghieri, A; Capece, A; Napolitano, F; Romano, P; Galgano, F; Altieri, G; Genovese, F Recent Updates on the Use of Agro-Food Waste for Biogas Production(2019)Applied Sciences-Basel, 9.0, 6
16732 Zbair, M; Limousy, L; Drané, M; Richard, C; Juge, M; Aemig, Q; Trably, E; Escudié, R; Peyrelasse, C; Bennici, S Integration of Digestate-Derived Biochar into the Anaerobic Digestion Process through Circular Economic and Environmental Approaches-A Review(2024)Materials, 17, 14
8593 Cecchi, F; Cavinato, C Smart Approaches to Food Waste Final Disposal(2019)International Journal Of Environmental Research And Public Health, 16.0, 16
25076 Singh, PK; Mohanty, P; Mishra, S; Adhya, TK Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments(2022)
22932 Zielinska, M; Bulkowska, K Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents(2024)Energies, 17.0, 15
28750 Habchi, S; Pecha, J; Sánek, L; Karouach, F; El Bari, H Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective(2024)
Scroll