Knowledge Agora



Similar Articles

Title Cathode regeneration and upcycling of spent LIBs: toward sustainability
ID_Doc 10137
Authors Xiao, X; Wang, L; Wu, YQ; Song, YZ; Chen, ZH; He, XM
Title Cathode regeneration and upcycling of spent LIBs: toward sustainability
Year 2023
Published Energy & Environmental Science, 16, 7
Abstract 'Green ambition towards sustainability' is one of the hot research topics of the 21st century. With the sharp steering of the energy infrastructure toward fulfilling this radical expectation, the last decade has seen a global trend toward diversified sustainable renewable energy sources (such as solar, wind, and hydroelectric power) and electrification. Lithium-ion batteries (LIBs) are playing a significant role in this energy revolution. However, with the massive scale of the production of LIBs and their eventual retirement, attention has been turned to the erratic supply of raw materials used to manufacture these batteries and their disposal. Cathode regeneration technology is likely to be an optimal solution for the disposal of waste cathodes, aimed at non-destructively repairing and straightforwardly reusing degraded cathode materials for re-manufacturing LIBs with a shortened circular process, reasonable profits, and excellent efficiency. Cathode upcycling technology, aimed at upgrading the electrochemical performance of degraded materials, can be well adapted to the upgrading of battery chemistry and show excellent flexibility and potential for transforming the LIB industry from a resource-based to a circular economy. Thus, a holistic perspective based on the complete life cycle of LIBs is encouraged, and sustainability must be at the forefront regarding battery and pack design, raw material acquisition, materials synthesis, manufacturing, operating, retiring, and recycling processes of LIBs.
PDF https://www.osti.gov/biblio/2316157

Similar Articles

ID Score Article
12349 Wu, XX; Liu, YH; Wang, JX; Tan, YH; Liang, Z; Zhou, GM Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability(2024)Advanced Materials, 36.0, 32
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
32830 Marchese, D; Giosuè, C; Staffolani, A; Conti, M; Orcioni, S; Soavi, F; Cavalletti, M; Stipa, P An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries(2024)Batteries-Basel, 10, 1
28821 Ferrara, C; Ruffo, R; Quartarone, E; Mustarelli, P Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling(2021)Advanced Energy And Sustainability Research, 2.0, 10
20750 Gnutzmann, MM; Makvandi, A; Ying, BX; Buchmann, J; Lüther, MJ; Helm, B; Nagel, P; Peterlechner, M; Wilde, G; Gomez-Martin, A; Kleiner, K; Winter, M; Kasnatscheew, J Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes(2024)
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
30033 Prazanová, A; Plachy, Z; Koci, J; Fridrich, M; Knap, V Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation(2024)Batteries-Basel, 10.0, 3
229 Harper, GDJ; Kendrick, E; Anderson, PA; Mrozik, W; Christensen, P; Lambert, S; Greenwood, D; Das, PK; Ahmeid, M; Milojevic, Z; Du, WJ; Brett, DJL; Shearing, PR; Rastegarpanah, A; Stolkin, R; Sommerville, R; Zorin, A; Durham, JL; Abbott, AP; Thompson, D; Browning, ND; Mehdi, BL; Bahri, M; Schanider-Tontini, F; Nicholls, D; Stallmeister, C; Friedrich, B; Sommerfeld, M; Driscoll, LL; Jarvis, A; Giles, EC; Slater, PR; Echavarri-Bravo, V; Maddalena, G; Horsfall, LE; Gaines, L; Dai, Q; Jethwa, SJ; Lipson, AL; Leeke, GA; Cowell, T; Farthing, JG; Mariani, G; Smith, A; Iqbal, Z; Golmohammadzadeh, R; Sweeney, L; Goodship, V; Li, Z; Edge, J; Lander, L; Nguyen, VT; Elliot, RJR; Heidrich, O; Slattery, M; Reed, D; Ahuja, J; Cavoski, A; Lee, RB; Driscoll, E; Baker, J; Littlewood, P; Styles, I; Mahanty, S; Boons, F Roadmap for a sustainable circular economy in lithium-ion and future battery technologies(2023)Journal Of Physics-Energy, 5, 2
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
Scroll