Knowledge Agora



Similar Articles

Title Recovery of Graphite from Spent Lithium-Ion Batteries
ID_Doc 10160
Authors Badenhorst, C; Kuzniarska-Biernacka, I; Guedes, A; Mousa, E; Ramos, V; Rollinson, G; Ye, GZ; Valentim, B
Title Recovery of Graphite from Spent Lithium-Ion Batteries
Year 2023
Published Recycling, 8, 5
Abstract Critical raw materials, such as graphite and lithium metal oxides (LMOs), with a high supply risk and high economic importance are present in spent lithium-ion batteries (LIBs). The recovery and recycling of these critical raw materials from LIBs will contribute to the circular economy model, reduce the environmental footprint associated with the mining of these materials, and lower their high supply risk. The main aim of this paper is to present a separation process to recover graphite from black mass (BM) from spent LIB. Simultaneously, LMO and copper (Cu) and aluminum (Al) foils were also recovered as by-products from the process. The process used a combination of simple and/or low environmental footprint technologies, such as sieving, sink-float, citric acid leaching, and milling through ultrasound and soft attrition, to allow separation of the LIB valuable components. Three graphite-rich products (with purities ranging between 74 and 88 wt.% total carbon and a combined yield of 14 wt.%) with three different sizes (<25 mu m, <45 mu m, and <75 mu m), Cu and Al foil fragments, and an LMO-rich precipitate product are delivered. The developed process is simple, using low temperatures and weak acids, and using affordable and scalable equipment available in the market. Its advantage over other LIB recycling processes is that it can be implemented, so to speak, "in your backyard".
PDF

Similar Articles

ID Score Article
23987 Pavón, S; Kaiser, D; Bertau, M Recovery of Al, Co, Cu, Fe, Mn, and Ni from spent LIBs after Li selective separation by COOL-Process - Part 2: Solvent Extraction from Sulphate Leaching Solution(2021)Chemie Ingenieur Technik, 93, 11
24630 Peng, C; Liu, FP; Aji, AT; Wilson, BP; Lundström, M Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself(2019)
22030 Rey, I; Vallejo, C; Santiago, G; Iturrondobeitia, M; Lizundia, E Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment(2021)Acs Sustainable Chemistry & Engineering, 9.0, 43
6410 Ruismäki, R; Rinne, T; Danczak, A; Taskinen, P; Serna-Guerrero, R; Jokilaakso, A Integrating Flotation and Pyrometallurgy for Recovering Graphite and Valuable Metals from Battery Scrap(2020)Metals, 10, 5
9017 Cattaneo, P; Callegari, D; Merli, D; Tealdi, C; Vadivel, D; Milanese, C; Kapelyushko, V; D'Aprile, F; Quartarone, E Sorting, Characterization, Environmentally Friendly Recycling, and Reuse of Components from End-of-Life 18650 Li Ion Batteries(2023)Advanced Sustainable Systems, 7.0, 9
13426 Zhao, Y; Kang, YQ; Fan, MC; Li, T; Wozny, J; Zhou, YA; Wang, XS; Chueh, YL; Liang, Z; Zhou, GM; Wang, JX; Tavajohi, N; Kang, FY; Li, BH Precise separation of spent lithium-ion cells in water without discharging for recycling(2022)
9511 Raj, B; Sahoo, MK; Nikoloski, A; Singh, P; Basu, S; Mohapatra, M Retrieving Spent Cathodes from Lithium-Ion Batteries through Flourishing Technologies(2023)Batteries & Supercaps, 6.0, 1
23531 Danczak, A; Ruismäki, R; Rinne, T; Klemettinen, L; O'Brien, H; Taskinen, P; Jokilaakso, A; Serna-Guerrero, R Worth from Waste: Utilizing a Graphite-Rich Fraction from Spent Lithium-Ion Batteries as Alternative Reductant in Nickel Slag Cleaning(2021)Minerals, 11, 7
25565 Liu, FP; Peng, C; Porvali, A; Wang, ZL; Wilson, BP; Lundström, M Synergistic Recovery of Valuable Metals from Spent Nickel-Metal Hydride Batteries and Lithium-Ion Batteries(2019)Acs Sustainable Chemistry & Engineering, 7, 19
10370 Zhang, YS; Schneider, K; Qiu, H; Zhu, HL A perspective of low carbon lithium-ion battery recycling technology(2022)
Scroll