Knowledge Agora



Similar Articles

Title Brewery spent grain valorization through fermentation: Targeting biohydrogen, carboxylic acids and methane production
ID_Doc 10177
Authors Pérez-Barragán, J; Martínez-Fraile, C; Muñoz, R; Quijano, G; Maya-Yescas, R; León-Becerril, E; Castro-Muñoz, R; García-Depraect, O
Title Brewery spent grain valorization through fermentation: Targeting biohydrogen, carboxylic acids and methane production
Year 2024
Published
Abstract This study investigated three different fermentation approaches to explore the potential for producing biohydrogen, carboxylic acids, and methane from hydrolysates of thermally dilute acid pretreated brewer's spent grains (BSG). Initially, the research focused on maximizing the volumetric hydrogen production rate (HPR) in the continuous dark fermentation (DF) of BSG hydrolysates by varying the hydraulic retention time (HRT). The highest HPR reported to date of 5.9 NL/L-d was achieved at 6 h HRT, with a Clostridium-dominated microbial community. The effect of the operational pH (4, 5, 6, and 7) on the continuous acidogenic fermentation was then investigated. A peak carboxylic acid concentration of 17.3 g CODequiv./L was recorded at pH 6, with an associated volumetric productivity of 900.5 +/- 13.1 mg CODequiv./L-h and a degree of acidification of 68.3 %. Lactic acid bacteria such as Limosilactobacillus and Lactobacillus were dominant at pH 4-5, while Weissella, , Enterococcus, , and Lachnoclostridium appeared at pH 6 and 7. Finally, this study evaluated the biochemical methane potential of the DF broth and the unfermented hydrolysates and found high methane yields of 659 and 517 NmL CH4/gVS added , respectively, both within one week. Overall, the results showed that pretreated BSG can be a low-cost feedstock for the production of bioenergy and valuable bio-based chemicals in a circular economy.
PDF https://doi.org/10.1016/j.psep.2024.08.071

Similar Articles

ID Score Article
21516 Serra, S; D'Arrigo, P; Rossato, LAM; Ruffini, E Microbial Fermentation of the Water-Soluble Fraction of Brewers' Spent Grain for the Production of High-Value Fatty Acids(2023)Fermentation-Basel, 9.0, 12
10715 Mohanakrishna, G; Sneha, NP; Rafi, SM; Sarkar, O Dark fermentative hydrogen production: Potential of food waste as future energy needs(2023)
18249 Sillero, L; Solera, R; Pérez, M Effect of the hydraulic retention time on the acidogenic fermentation of sewage sludge, wine vinasse and poultry manure for biohydrogen production(2022)
27832 Costa, S; Summa, D; Semeraro, B; Zappaterra, F; Rugiero, I; Tamburini, E Fermentation as a Strategy for Bio-Transforming Waste into Resources: Lactic Acid Production from Agri-Food Residues(2021)Fermentation-Basel, 7.0, 1
24087 Sganzerla, WG; Sillero, L; Forster-Carneiro, T; Solera, R; Perez, M Determination of Anaerobic Co-fermentation of Brewery Wastewater and Brewer's Spent Grains for Bio-hydrogen Production(2023)Bioenergy Research, 16, 2
23496 Carvalheira, M; Amorim, CL; Oliveira, AC; Guarda, EC; Costa, E; Teixeira, MR; Castro, PML; Duque, AF; Reis, MAM Valorization of Brewery Waste through Polyhydroxyalkanoates Production Supported by a Metabolic Specialized Microbiome(2022)Life-Basel, 12, 9
15412 Alhajeri, NS; Tawfik, A; Al-Fadhli, FM; Nasr, M Enhancing hydrogen production and biochar recovery from algal biomass: A novel techno-economic synergism with gelatinous digestate(2024)
13909 Zhang, WQ; Wang, SL; Yin, FB; Cao, QT; Lian, TJ; Zhang, HY; Zhu, ZP; Dong, HM Medium-chain carboxylates production from co-fermentation of swine manure and corn stalk silage via lactic acid: Without external electron donors(2022)
22357 Tiwari, A; Nakamura, K Closing the loop on biohydrogen production: A critical review on the post-fermentation broth management techniques(2024)
13275 Esteban-Gutiérrez, M; Garcia-Aguirre, J; Irizar, I; Aymerich, E From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling(2018)
Scroll