Knowledge Agora



Similar Articles

Title Synergetic recycling of permanent magnet and Li-ion battery cathode material for metals recovery
ID_Doc 10213
Authors Borra, VL; Jena, A; Sistla, NS; Venkatesan, P; Onal, MAR; Borra, CR
Title Synergetic recycling of permanent magnet and Li-ion battery cathode material for metals recovery
Year 2024
Published
Abstract Rare earth elements (REEs)-based (NdFeB) magnets and lithium-ion batteries (LIBs) are critical for a low-carbon economy. Their production depends on critical elements like REEs, Li, Co and Ni. Recycling of these products have been explored separately as a potential solution. Conventional methods for recycling NdFeB magnets and LIBs face challenges like high energy consumption, lengthy processing, excessive reagent usage, and waste generation. In this study, a novel synergetic recycling methodology is proposed to minimize these challenges. The idea is based on using waste ferrous sulfate solution generated during magnet leaching as a reducing and leaching reagent for battery recycling thereby eliminating the need for additional reagents for oxidation of iron in NdFeB and reduction of cathode material in LIBs. The magnet is leached in diluted H2SO4 at 70 degrees C followed by double sulfate precipitation for REEs with Na2SO4. The REE-depleted but acidic ferrous solution is then used for reductive leaching of cathode material at 90 degrees C. The overall recovery rates of REEs, Li, Co, Ni, and Mn in this process are >95%. The iron from magnet material is recovered as crystalline and easily-filterable iron compound that can be converted to goethite and used as a byproduct. This synergetic approach not only reduces reagent consumption and waste generation aligning with the principles of circular economy but also offers improved efficiency, resource conservation, and environmental sustainability.
PDF

Similar Articles

ID Score Article
25565 Liu, FP; Peng, C; Porvali, A; Wang, ZL; Wilson, BP; Lundström, M Synergistic Recovery of Valuable Metals from Spent Nickel-Metal Hydride Batteries and Lithium-Ion Batteries(2019)Acs Sustainable Chemistry & Engineering, 7, 19
19849 Yadav, J; Sarker, SK; Bruckard, W; Jegatheesan, V; Haque, N; Singh, N; Pramanik, BK Greening the supply chain: Sustainable approaches for rare earth element recovery from neodymium iron boron magnet waste(2024)Journal Of Environmental Chemical Engineering, 12.0, 4
61858 Kaya, M An overview of NdFeB magnets recycling technologies(2024)
20216 Dushyantha, N; Kuruppu, GN; Nanayakkara, CJ; Ratnayake, AS The Role of Permanent Magnets, Lighting Phosphors, and Nickel-Metal Hydride (NiMH) Batteries as a Future Source of Rare Earth Elements (REEs): Urban Mining Through Circular Economy(2024)Mining Metallurgy & Exploration, 41, 1
5340 Diehl, O; Schönfeldt, M; Brouwer, E; Dirks, A; Rachut, K; Gassmann, J; Güth, K; Buckow, A; Gauss, R; Stauber, R; Gutfleisch, O Towards an Alloy Recycling of Nd-Fe-B Permanent Magnets in a Circular Economy(2018)Journal Of Sustainable Metallurgy, 4, 2
16945 Rajyaguru, YV; Pandey, A; Bose, A; Vishnumurthy, KA Greening the future: Pioneering lithium battery recycling and beyond in the E-mobility revolution(2024)
12310 Vieceli, N; Casasola, R; Lombardo, G; Ebin, B; Petranikova, M Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid(2021)
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
10370 Zhang, YS; Schneider, K; Qiu, H; Zhu, HL A perspective of low carbon lithium-ion battery recycling technology(2022)
Scroll