Knowledge Agora



Similar Articles

Title Electrochemical performance of chemically treated pyrolytic carbon black from waste car tyres
ID_Doc 10215
Authors Kusi, DA; Arthur, EK; Gikunoo, E; Dzikunu, P; Asiedu, KK; Armoo, R; Agyemang, FO
Title Electrochemical performance of chemically treated pyrolytic carbon black from waste car tyres
Year 2024
Published
Abstract Pyrolytic carbon black (CBp) is a solid by-product of tyre pyrolysis that contains various contaminants from the tyre additives. These contaminants limit the use of CBp as a carbon source for energy storage applications such as supercapacitors. This study aims to improve the physicochemical, morphological, and electrochemical properties of CBp by applying different chemical treatments and activation methods. The chemical treatments include acid (HCl), base (NaOH), acid-base (HCl/NaOH), and desulphurization (NaOH in xylene) processes to remove impurities such as sulphur, zinc, and silicon. The treated CBp samples are then activated by KOH impregnation technique to increase the surface area and porosity. The characterizations of the treated CBp samples are performed using Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDX), X-ray Diffraction (XRD), and Brunner Emmett Teller (BET). The electrochemical performance of the treated CBp samples are evaluated using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that the chemical treatments significantly reduce the impurity levels and enhance the electrochemical performance of CBp. The desulphurized CBp sample exhibits the highest specific capacitance of 218 F/g among the treated CBp samples. The findings of this study suggest that CBp can be effectively utilized as a potential carbon source for supercapacitor electrodes by applying suitable chemical treatments and activation methods. This will create a circular economy to valorize CBp.
PDF https://doi.org/10.1016/j.nexus.2024.100297

Similar Articles

ID Score Article
10214 Egun, IL; Liu, ZX; Zheng, YY; Wang, ZH; Song, JH; Hou, Y; Lu, J; Wang, YC; Chen, ZF Turning waste tyres into carbon electrodes for batteries: Exploring conversion methods, material traits, and performance factors(2024)
6316 Dziejarski, B; Hernández-Barreto, DF; Moreno-Piraján, JC; Giraldo, L; Serafin, J; Knutsson, P; Andersson, K; Krzyzynska, R Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO2 capture abilities(2024)
28772 Kalyani, P; Banuprabha, TR; Velkannan, V Activated carbon from banyan prop root biomass and its application in pseudocapacitors: a strategy towards circular economy for energy(2021)Ionics, 27.0, 3
13237 Okoye, CO; Zhu, MM; Jones, I; Zhang, J; Zhang, ZZ; Zhang, DK An investigation into the preparation of carbon black by partial oxidation of spent tyre pyrolysis oil(2022)
12159 Alcaraz, L; Adán-Más, A; Arévalo-Cid, P; Montemor, MD; López, FA RETRACTED: Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors (Retracted article. See vol. 11, 2023)(2020)
13011 Costa, SMR; Fowler, D; Carreira, GA; Portugal, I; Silva, CM Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires(2022)Materials, 15.0, 6
22301 Venna, S; Sharma, HB; Mandal, D; Reddy, HP; Chowdhury, S; Chandra, A; Dubey, BK Carbon material produced by hydrothermal carbonisation of food waste as an electrode material for supercapacitor application: A circular economy approach(2022)Waste Management & Research, 40.0, 10
13919 Ramírez, A; Muñoz-Morales, M; Fernández-Morales, FJ; Llanos, J Valorization of polluted biomass waste for manufacturing sustainable cathode materials for the production of hydrogen peroxide(2023)
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
17605 Cataldo, F Further insight into some properties of pyrolytic carbon black obtained from scrap truck tires(2020)Fullerenes Nanotubes And Carbon Nanostructures, 28, 12
Scroll