Knowledge Agora



Similar Articles

Title PLA Feedstock Filled with Spent Coffee Grounds for New Product Applications with Large-Format Material Extrusion Additive Manufacturing
ID_Doc 10218
Authors Paramatti, M; Romani, A; Pugliese, G; Levi, M
Title PLA Feedstock Filled with Spent Coffee Grounds for New Product Applications with Large-Format Material Extrusion Additive Manufacturing
Year 2024
Published Acs Omega, 9, 6
Abstract Food waste and loss generate significant waste such as spent coffee grounds (SCGs) from coffee consumption. These byproducts can be valorized by following circular economy and bioeconomy principles, e.g., using SCGs in polymer-based composites for 3D printing. Although desktop-size material extrusion additive manufacturing is increasingly adopted for biomass-polymer-based composites, the potential of large-format direct extrusion 3D printing systems remains unexplored. This work investigated the thermal, rheological, and mechanical properties of PLA/SCG composites for applications with a large-format pellet extrusion 3D printer. The formulations exhibit minimal degradation at typical 3D printing temperatures of PLA, i.e., similar to 190 degrees C, and limited effects on crystallinity by increasing the SCG weight percentage. The decrease in viscosity due to SCGs improves the printability and layer adhesion, as confirmed by the tensile test results, such as higher ultimate tensile strength and elongation at break values compared to those of the state-of-the-art values. Using pellet feedstocks contributes to limiting the effects of thermomechanical degradation by reducing raw material processing, i.e., avoiding filament extrusion. Using PLA/SCGs formulations was demonstrated through 3D printed complex parts with nonplanar slicing techniques, including a large-scale furniture product, validating large-format pellet extrusion 3D printers for scaling up the use of biomass-filled polymers.
PDF https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c05669

Similar Articles

ID Score Article
20979 Romani, A; Paramatti, M; Gallo, L; Levi, M Large-format material extrusion additive manufacturing of PLA, LDPE, and HDPE compound feedstock with spent coffee grounds(2024)International Journal Of Advanced Manufacturing Technology, 134, 3-4
24120 Romani, A; Perusin, L; Ciurnelli, M; Levi, M Characterization of PLA feedstock after multiple recycling processes for large-format material extrusion additive manufacturing(2024)
14079 Alexandre, A; Sanchez, FCA; Boudaoud, H; Camargo, M; Pearce, JM Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers(2020)3D Printing And Additive Manufacturing, 7, 5
18438 Castanon-Jano, L; Palomera-Obregon, P; Lazaro, M; Blanco-Fernandez, E; Blasón, S Enhancing sustainability in polymer 3D printing via fusion filament fabrication through integration of by-products in powder form: mechanical and thermal characterization(2024)International Journal Of Advanced Manufacturing Technology, 133.0, 3-4
29620 Fontana, L; Giubilini, A; Arrigo, R; Malucelli, G; Minetola, P Characterization of 3D Printed Polylactic Acid by Fused Granular Fabrication through Printing Accuracy, Porosity, Thermal and Mechanical Analyses(2022)Polymers, 14.0, 17
22353 Hasan, MR; Davies, IJ; Paramanik, A; John, M; Biswas, WK Fabrication and Characterisation of Sustainable 3D-Printed Parts Using Post-Consumer PLA Plastic and Virgin PLA Blends(2024)Processes, 12.0, 4
27849 Fico, D; Rizzo, D; De Carolis, V; Montagna, F; Corcione, CE Sustainable Polymer Composites Manufacturing through 3D Printing Technologies by Using Recycled Polymer and Filler(2022)Polymers, 14.0, 18
13228 Agbakoba, VC; Webb, N; Jegede, E; Phillips, R; Hlangothi, SP; John, MJ Mechanical Recycling of Waste PLA Generated From 3D Printing Activities: Filament Production and Thermomechanical Analysis(2024)Macromolecular Materials And Engineering, 309, 8
28046 Fico, D; Rizzo, D; De Carolis, V; Corcione, CE Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing(2024)Materials, 17.0, 6
14363 Morales, MA; Maranon, A; Hernandez, C; Porras, A Development and Characterization of a 3D Printed Cocoa Bean Shell Filled Recycled Polypropylene for Sustainable Composites(2021)Polymers, 13, 18
Scroll