Knowledge Agora



Similar Articles

Title Upcycling of Spent LiCoO2 Cathode to Lithium Dual-Ion Battery Anode
ID_Doc 10223
Authors Suriyakumar, S; Pattavathi, B; Jojo, A; Shaijumon, MM
Title Upcycling of Spent LiCoO2 Cathode to Lithium Dual-Ion Battery Anode
Year 2023
Published Advanced Sustainable Systems, 7, 6
Abstract Owing to the paradigm shift of the automobile industry toward the electrification of vehicles, the aftermath of batteries that power these devices at the end of their lives has to be addressed strenuously. Since upcycling strategies are hardly in the limelight, this paper focuses on giving a second life to LiCoO2 cathode as a dual-ion battery (DIB) anode. Among many possible recovery approaches explored for cobalt, a microwave-assisted green leaching method comprising mild leaching agents is chosen for this work. Cobalt is recovered as cobalt oxalate and converted to cobalt/cobalt oxide nanospheres embedded in a porous graphitic carbon matrix (Co3O4/Co@C). Due to the high working voltage, excellent safety, and environmental friendliness, DIBs are being considered as a replacement for lithium-ion batteries in specific sectors. In an unconventional approach, the derived Co3O4/Co@C is effectively employed as an anode material for dual-ion batteries. The half-cell demonstrates a high discharge capacity of 550 mAh g(-1) at 0.1 A g(-1). A full-cell DIB fabricated using Co3O4/Co@C, derived from upcycled LiCoO2 as an anode and graphite as a cathode, shows an appreciable capacity and remarkable cycling stability. This sustainable approach for upcycling exhausted LIBs can pave the way to improve the circular economy of batteries.
PDF

Similar Articles

ID Score Article
2282 dos Santos, MP; Garde, IAA; Ronchini, CMB; Cardozo, L; de Souza, GBM; Abbade, MLF; Regone, NN; Jegatheesan, V; de Oliveira, JA A technology for recycling lithium-ion batteries promoting the circular economy: The RecycLib(2021)
21724 Mirshokraee, SA; Muhyuddin, M; Morina, R; Poggini, L; Berretti, E; Bellini, M; Lavacchi, A; Ferrara, C; Santoro, C Upcycling of waste lithium-cobalt-oxide from spent batteries into electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction: A strategy to turn the trash into treasure(2023)
20750 Gnutzmann, MM; Makvandi, A; Ying, BX; Buchmann, J; Lüther, MJ; Helm, B; Nagel, P; Peterlechner, M; Wilde, G; Gomez-Martin, A; Kleiner, K; Winter, M; Kasnatscheew, J Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes(2024)
26363 El Mounafia, N; Aannir, M; Hakkou, R; Zaabout, A; Saadoune, I Comparative performance analysis of NMC cathodes elaborated from recovered and commercial raw materials: A low-temperature molten salt approach for extracting critical metals from end-of-life lithium-ion batteries(2023)
9284 Chan, KH; Anawati, J; Malik, M; Azimi, G Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles(2021)Acs Sustainable Chemistry & Engineering, 9.0, 12
10137 Xiao, X; Wang, L; Wu, YQ; Song, YZ; Chen, ZH; He, XM Cathode regeneration and upcycling of spent LIBs: toward sustainability(2023)Energy & Environmental Science, 16, 7
25673 Yu, JD; Li, J; Zhang, S; Wei, F; Liu, YJ; Li, JH Mechanochemical upcycling of spent LiCoO2 to new LiNi0.80Co0.15Al0.05O2 battery: An atom economy strategy(2023)Proceedings Of The National Academy Of Sciences Of The United States Of America, 120, 14
6432 Tan, JH; Wang, Q; Chen, S; Li, ZH; Sun, J; Liu, W; Yang, WS; Xiang, X; Sun, XM; Duan, X Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions(2021)
15375 Aravindan, V; Jayaraman, S; Tedjar, F; Madhavi, S From Electrodes to Electrodes: Building High-Performance Li-Ion Capacitors and Batteries from Spent Lithium-Ion Battery Carbonaceous Materials(2019)Chemelectrochem, 6, 5
21099 Aannir, M; Hakkou, R; Levard, C; Taha, Y; Ghennioui, A; Rose, J; Saadoune, I Towards a closed loop recycling process of end-of-life lithium-ion batteries: Recovery of critical metals and electrochemical performance evaluation of a regenerated LiCoO2(2023)
Scroll