Knowledge Agora



Similar Articles

Title Super and selective adsorption of cationic dyes using carboxylate-modified lignosulfonate by environmentally friendly solvent-free esterification
ID_Doc 10262
Authors Tang, YF; Lin, TP; Ai, SJ; Li, YQ; Zhou, R; Peng, YZ
Title Super and selective adsorption of cationic dyes using carboxylate-modified lignosulfonate by environmentally friendly solvent-free esterification
Year 2020
Published
Abstract Herein, following the strategy of sustainable, environment protection, circular economy development, carboxylate-modification lignosulfonate polymer (M-LSP) was synthesized from lignosulfonate by solvent-free esterifying with maleic anhydride (MA) by one step, and was used to remove the dyes by adsorption. FT-IR and XPS were used to confirm successful preparation of M-LSP. The result is that: M-LSP is apt W adsorb cationic dye. In single system, the super adsorption performance of M-LSP for methylene blue (MB) is depended on the carboxyl content in M-LSP. M-LSP performs its remarkable adsorption performance for MB stably at pH 7.0 similar to 10.0, and the maximum adsorption capacity of M-LSP for MB is up to 613.5 mg/g according to Langmuir isotherm model. The Langmuir isotherm and pseudo-second-order kinetic models are more suitable to desoipt adsorption process of M-LSP for MB. In binary and ternary system, the M-LSP adsorbs the cationic dyes simultaneously, but selectively adsorbs MB. M-LSP can effectively remove cationic dyes in simulate dyestuff water. Moreover, the removal percentage of regenerated M-LSP decreases only 8.4% after 4 desorption-resorption cycles. The results indicated that M-LSP could be a candidate for remediation of real printing and dyeing or textile wastewater containing cationic dyes. (C) 2020 Published by Elsevier B.V.
PDF

Similar Articles

ID Score Article
5540 Bendaoudi, AA; Boudouaia, N; Jellali, S; Benhafsa, FM; Bengharez, Z; Papamichael, I; Jeguirim, M Facile synthesis of double-cross-linked alginate-based hydrogel: Characterization and use in a context of circular economy for cationic dye removal(2024)Waste Management & Research, 42, 6
17136 Abdoul, HJ; Yi, MH; Prieto, M; Yue, HB; Ellis, GJ; Clark, JH; Budarin, VL; Shuttleworth, PS Efficient adsorption of bulky reactive dyes from water using sustainably-derived mesoporous carbons(2023)
5988 Taqui, SN; Syed, UT; Mir, RA; Syed, AA; Ukkund, SJ; Deepakumari, HN; Al-Mansour, AI; Alam, S; Berwal, P; Majdi, HS A practical approach to demonstrate the circular economy in remediation of textile dyes using nutraceutical industrial spent(2024)Rsc Advances, 14, 36
24790 Sulthana, R; Taqui, SN; Kumari, HND; Mir, RA; Syed, AA; Saad, HM; Bashir, MN; Fouad, Y; Jathar, L; Shelare, S Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies(2024)
10945 Galloni, MG; Bortolotto, V; Falletta, E; Bianchi, CL pH-Driven Selective Adsorption of Multi-Dyes Solutions by Loofah Sponge and Polyaniline-Modified Loofah Sponge(2022)Polymers, 14, 22
21700 Samal, PP; Qaiyum, MA; Dutta, S; Mohanta, J; Dey, B; Dey, S Towards a circular economy: chemical packaging waste as a promising scavenger for Neutral red from water and wastewater(2023)International Journal Of Environmental Science And Technology, 20.0, 11
Scroll