Knowledge Agora



Similar Articles

Title Granulation-Carbonation Treatment of Alkali Activated Steel Slag for Secondary Aggregates Production
ID_Doc 10266
Authors Morone, M; Costa, G; Georgakopoulos, E; Manovic, V; Stendardo, S; Baciocchi, R
Title Granulation-Carbonation Treatment of Alkali Activated Steel Slag for Secondary Aggregates Production
Year 2017
Published Waste And Biomass Valorization, 8, 5
Abstract In view of the EU's circular economy strategy, there is a need to develop treatments that may allow to improve the management of industrial residues such as steel manufacturing slag, for example by producing secondary products that may be used for different applications. This work evaluates the performance of a combined carbonation and granulation treatment applied to basic oxygen furnace (BOF) steel slag with the aim of producing secondary aggregates and of storing CO2 in a solid and stable form. In order to improve the mechanical properties of the product, a solution of sodium silicate and sodium hydroxide was tested as binder instead of water in both the granulation and combined granulation-carbonation tests. The results showed that the granules produced using the alkali activator with or without CO2 addition, presented a mean size ranging from 1 to 5 mm and adequate mechanical properties for use in civil engineering applications. The maximum CO2 uptake attained was of 4% wt. for the alkali activated and carbonated granules after 60 min of treatment and 7 days curing. As for the leaching behaviour of the produced granules, an increase in the release of Cr and V was found for the product of the granulation-carbonation treatment with alkali activation. Instead, granulation with alkali activation or granulation with carbonation showed to decrease the release of Ba and Cr with regard to the untreated residues.
PDF

Similar Articles

ID Score Article
9655 Zhang, YY; Yu, LH; Cui, KK; Wang, H; Fu, T Carbon capture and storage technology by steel-making slags: Recent progress and future challenges(2023)
23770 Myers, C; Sasagawa, J; Nakagaki, T Enhancing CO2 Mineralization Rate and Extent of Iron and Steel Slag via Grinding(2022)Isij International, 62, 12
22589 Capelo-Avilés, S; de Oliveira, RT; Stampino, IIG; Gispert-Guirado, F; Casals-Terré, A; Giancola, S; Galán-Mascarós, JR A thorough assessment of mineral carbonation of steel slag and refractory waste(2024)
27040 Moon, S; Kim, E; Noh, S; Triwigati, PT; Choi, S; Park, Y Carbon mineralization of steel and iron-making slag: Paving the way for a sustainable and carbon-neutral future(2024)Journal Of Environmental Chemical Engineering, 12, 2
29558 Pan, SY; Chung, TC; Ho, CC; Hou, CJ; Chen, YH; Chiang, PC CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain(2017)
8737 Biava, G; Zacco, A; Zanoletti, A; Sorrentino, GP; Capone, C; Princigallo, A; Depero, LE; Bontempi, E Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo-Brescia Area(2023)Materials, 16.0, 11
28053 Chandel, SS; Singh, PK; Katiyar, PK; Randhawa, NS A Review on Environmental Concerns and Technological Innovations for the Valorization of Steel Industry Slag(2023)
11115 Ghorbani, S; Stefanini, L; Sun, YB; Walkley, B; Provis, JL; De Schutter, G; Matthys, S Characterisation of alkali-activated stainless steel slag and blast-furnace slag cements(2023)
5570 Krammer, AC; Doschek-Held, K; Steindl, FR; Weisser, K; Gatschlhofer, C; Juhart, J; Wohlmuth, D; Sorger, C Valorisation of metallurgical residues via carbothermal reduction: A circular economy approach in the cement and iron and steel industry(2024)
18829 Lancellotti, I; Piccolo, F; Traven, K; Cesnovar, M; Ducman, V; Leonelli, C Alkali Activation of Metallurgical Slags: Reactivity, Chemical Behavior, and Environmental Assessment(2021)Materials, 14.0, 3
Scroll