Knowledge Agora



Similar Articles

Title Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review
ID_Doc 10292
Authors Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV
Title Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review
Year 2021
Published Energy & Fuels, 35, 16
Abstract The increasing demand for plastics for their widespread applications has ultimately resulted in accumulation of substantial plastic waste, which remains a concern due to limited efforts, inadequacy, and environmental distresses of conventional techniques for waste plastics remediation. The enhanced production of raw materials for polymer syntheses has a dual impact on our ecosystem by causing rapid depletion of nonrenewable petroleum resources and waste generation. To address this situation, researchers have adopted advanced thermochemical recycling processes to produce intermediate products of the petrochemical industries including monomers, fuels, and other value-added products. Such practices can potentially serve the purpose of a circular economy. This review aims to cover the recent highlights in the field of waste plastics pyrolysis including critical observations from the past to provide precise understanding. Consequently, the reactivities and product distributions for plastic feeds, pyrolysis reactors, roles of catalysts, and effects of operating parameters on reactivity and selectivity have been covered. Coprocessing of plastic waste with radioactive materials, biomass, and heavy petroleum residue is also discussed. Furthermore, an overview on kinetics and mechanistic aspects of plastic pyrolysis is presented with a discussion on relevant analytical techniques. The applications of pyrolysis oil as a fuel or fuel additive are comprised in a separate section. Lastly, comparisons of existing chemical recycling technologies, summaries of commercial operations, and future projections are provided.
PDF

Similar Articles

ID Score Article
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
5931 Dai, LL; Zhou, N; Lv, YC; Cheng, YL; Wang, YP; Liu, YH; Cobb, K; Chen, PL; Lei, HW; Ruan, RG Pyrolysis technology for plastic waste recycling: A state-of-the-art review(2022)
21396 Armenise, S; SyieLuing, W; Ramírez-Velásquez, JM; Launay, F; Wuebben, D; Ngadi, N; Rams, J; Muñoz, M Plastic waste recycling via pyrolysis: A bibliometric survey and literature review(2021)
16702 Zeller, M; Netsch, N; Richter, F; Leibold, H; Stapf, D Chemical Recycling of Mixed Plastic Wastes by Pyrolysis - Pilot Scale Investigations(2021)Chemie Ingenieur Technik, 93, 11
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
13476 Chang, SH Plastic waste as pyrolysis feedstock for plastic oil production: A review(2023)
14484 Nabgan, W; Ikram, M; Alhassan, M; Owgi, AHK; Tran, TV; Parashuram, L; Nordin, AH; Djellabi, R; Jalil, AA; Medina, F; Nordin, ML Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste(2023)Arabian Journal Of Chemistry, 16, 6
9689 Lindfors, C; Khan, M; Siddiq, F; Arnold, M; Ohra-aho, T Catalytic Processing of Mixed Plastics Aiming for Industrial Reuse(2024)Energy & Fuels, 38.0, 9
7476 Martínez-Narro, G; Hassan, S; Phan, AN Chemical recycling of plastic waste for sustainable polymer manufacturing - A critical review(2024)Journal Of Environmental Chemical Engineering, 12, 2
19019 Jain, A; Vinu, R Kinetic experiments for pyrolytic recycling of solid plastic waste(2022)
Scroll