Knowledge Agora



Similar Articles

Title Closed-circulating CO2 sequestration process evaluation utilizing wastes in steelmaking plant
ID_Doc 10297
Authors Zhang, HN; Zuo, QQ; Wei, C; Lin, X; Dong, JP; Liao, CF; Xu, AJ
Title Closed-circulating CO2 sequestration process evaluation utilizing wastes in steelmaking plant
Year 2020
Published
Abstract The wastes network system exploration in metallurgical process imposes of great significance for advancing green circular economy in steel plant. This paper originally proposes a closed-circulating CO2 sequestering process for wastes appreciation and harmless disposal, and the effect of two circulation strategy, i.e. Slag circulation strategy and cold-rolling waste water(CRW) circulation strategy, on the CO2 uptake efficiency, carbonation degree and desalination rate were systemically discussed. Then, their kinetics are analyzed by model and molecular simulation in detail, respectively. In addition, the energy consumption and the cost are simulated for comprehensively evaluating its superiority. The experimental and molecular simulation results all show that the peak values for both strategies could be achieved when circulation times is in the range of three to five. CRW circulation strategy has a better CO2 uptake efficiency than slag circulation strategy, the CO2 uptake efficiency is about 487kgCO(2)/tslag and corresponding desalination rate is 48.9%, when CRW is circulated for five times at 60 degrees C and 20 L/g for 90 min. Adopting CRW circulation strategy, the CO2 sequestration efficiency is averagely doubled comparing to previous results. 129%-183% energy consumption and 35.6% cost would be reduced, which represents that the proposed routine is economical to step forward to industrial application. (C) 2020 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
22589 Capelo-Avilés, S; de Oliveira, RT; Stampino, IIG; Gispert-Guirado, F; Casals-Terré, A; Giancola, S; Galán-Mascarós, JR A thorough assessment of mineral carbonation of steel slag and refractory waste(2024)
9655 Zhang, YY; Yu, LH; Cui, KK; Wang, H; Fu, T Carbon capture and storage technology by steel-making slags: Recent progress and future challenges(2023)
5531 Pan, SY; Shah, KJ; Chen, YH; Wang, MH; Chiang, PC Deployment of Accelerated Carbonation Using Alkaline Solid Wastes for Carbon Mineralization and Utilization Toward a Circular Economy(2017)Acs Sustainable Chemistry & Engineering, 5, 8
24215 Perathoner, S; Van Geem, KM; Marin, GB; Centi, G Reuse of CO2 in energy intensive process industries(2021)Chemical Communications, 57, 84
26161 Tenhumberg, N; Kolbe, N Production of Sustainable Methanol from Industrial Exhaust Gases(2024)Chemie Ingenieur Technik, 96, 9
13209 Ramirez-Corredores, MM; Diaz, LA; Gaffney, AM; Zarzana, CA Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants(2021)
28394 Wich, T; Lueke, W; Deerberg, G; Oles, M Carbon2Chem®-CCU as a Step Toward a Circular Economy(2020)
Scroll