Knowledge Agora



Similar Articles

Title Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming
ID_Doc 10300
Authors Moreno, VC; Iervolino, G; Tugnoli, A; Cozzani, V
Title Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming
Year 2020
Published
Abstract The development and design of innovative biomass waste to energy conversion processes is a key issue to pursue the implementation of circular economy and to endorse a sustainable management of agricultural land. Assessing the environmental and economic sustainability of such processes is of paramount importance to prevent the trade-off of their impacts. The present study focused on a novel biomass waste to energy conversion process based on thermocatalytic reforming (TCR). Two different agricultural waste substrates (olive wood pruning and digestate) were selected as reference cases for conversion to energy and valuable material fractions. Mass and energy balances allowed the calculation of environmental and economic indexes considering alternative scenarios for the final use of the energy and of the products obtained from the TCR conversion (i.e. syngas, bio-oil and bio-char). A sensitivity analysis was carried out to assess the robustness of results. The overall performances of the TCR process resulted strongly related to the characteristics of the biomass waste and to the possible use of the product fractions obtained in the TCR process. The use of bio-char for soil amendment, allowed by the high quality of bio-char obtained from the TCR, was a key point to improve the expected environmental and economic sustainability of the conversion process. (C) 2019 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
6979 Begum, YA; Kumari, S; Jain, SK; Garg, MC A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery(2024)Environmental Science-Advances, 3, 9
19828 Ufitikirezi, JDM; Filip, M; Ghorbani, M; Zoubek, T; Olsan, P; Bumbálek, R; Strob, M; Bartos, P; Umurungi, SN; Murindangabo, YT; Hermánek, A; Tupy, O; Havelka, Z; Stehlík, R; Cerny, P; Smutny, L Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion(2024)Sustainability, 16.0, 9
13097 Sikiru, S; Abioye, KJ; Adedayo, HB; Adebukola, SY; Soleimani, H; Anar, M Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review(2024)
29659 Joshi, NC; Sinha, S; Bhatnagar, P; Nath, Y; Negi, B; Kumar, V; Gururani, P A concise review on waste biomass valorization through thermochemical conversion(2024)
2660 Saravanan, A; Karishma, S; Kumar, PS; Rangasamy, G A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy(2023)
24057 Vallejo, F; Díaz-Robles, LA; González, P; Poblete, J Energy Efficiency Evaluation Of A Continuous Treatment Of Agroforestry Waste Biomass By Hydrothermal Carbonization(2021)
22590 Okolie, JA; Epelle, EI; Tabat, ME; Orivri, U; Amenaghawon, AN; Okoye, PU; Gunes, B Waste biomass valorization for the production of biofuels and value-added products: A comprehensive review of thermochemical, biological and integrated processes(2022)
21315 Sarma, RN; Vinu, R An assessment of sustainability metrics for waste-to-liquid fuel pathways for a low carbon circular economy(2023)
22769 Nunes, LJR; Loureiro, LMEF; Sá, LCR; Silva, HFC Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products(2020)Clean Technologies, 2.0, 3
27692 Xu, MY; Yang, M; Sun, HS; Gao, M; Wang, QH; Wu, CF Bioconversion of biowaste into renewable energy and resources: A sustainable strategy(2022)
Scroll