Knowledge Agora



Similar Articles

Title A perspective of low carbon lithium-ion battery recycling technology
ID_Doc 10370
Authors Zhang, YS; Schneider, K; Qiu, H; Zhu, HL
Title A perspective of low carbon lithium-ion battery recycling technology
Year 2022
Published
Abstract With the significant rise in the application of lithium-ion batteries (LIBs) in electromobility, the amount of spent LIBs is also increasing. LIB recycling technologies which conserve sustainable resources and protect the environment need to be developed for achieving a circular economy. Recycling of LIBs will reduce the environmental impact of the batteries by reducing carbon dioxide emissions in terms of saving natural resources to reduce raw materials mining. This work reviewed the most advanced and ongoing LIB recycling technologies, and categorized the reviewed technologies according to the components of the LIB cells, including cathodes, anodes, electrolyte and separators. Most recycling technologies focus on the recovery of valuable metals, particular for cobalt by hydrometallurgical method from the cathodes. The commercial process based on the combination of the pyrometallurgical and hydrometallurgical technologies which was commercially developed by Umicore, and Retriev, is mainly focusing on the developed hydrometallurgical technology for optimizing the recovering efficiency. There is research undergoing to recover graphite from anodes through Fenton oxidation, froth flotation and thermal treatment with a combination of hydrometallurgical process. As LIB recycling technologies are under development, there is great potential to reduce emission of carbon dioxide and this should be a focus in research. There is also a high need to develop a more advanced LIB recycling technology to recover more valuable materials with reduced carbon emission, therefore to contribute to "Net zero " ambition.
PDF https://doi.org/10.1016/j.ccst.2022.100074

Similar Articles

ID Score Article
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
2282 dos Santos, MP; Garde, IAA; Ronchini, CMB; Cardozo, L; de Souza, GBM; Abbade, MLF; Regone, NN; Jegatheesan, V; de Oliveira, JA A technology for recycling lithium-ion batteries promoting the circular economy: The RecycLib(2021)
16945 Rajyaguru, YV; Pandey, A; Bose, A; Vishnumurthy, KA Greening the future: Pioneering lithium battery recycling and beyond in the E-mobility revolution(2024)
14824 Schwich, L; Schubert, T; Friedrich, B Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation(2021)Metals, 11, 2
15512 Swain, B Recovery and recycling of lithium: A review(2017)
24867 Pavón, S; Kaiser, D; Mende, R; Bertau, M The COOL-Process-A Selective Approach for Recycling Lithium Batteries(2021)Metals, 11, 2
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
7234 Popescu, IA; Dorneanu, SA; Truta, RM; Ilea, P RECENT RESEARCH RELATED TO Li-ION BATTERY RECYCLING PROCESSES-A REVIEW(2022)Studia Universitatis Babes-Bolyai Chemia, 67, 1
32288 Wu, F; Li, L; Crandon, L; Cao, YY; Cheng, F; Hicks, A; Zeng, EY; You, J Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies(2022)
Scroll