Knowledge Agora



Similar Articles

Title Migration of Sulfur and Nitrogen in the Pyrolysis Products of Waste and Contaminated Plastics
ID_Doc 10422
Authors Scierski, W
Title Migration of Sulfur and Nitrogen in the Pyrolysis Products of Waste and Contaminated Plastics
Year 2021
Published Applied Sciences-Basel, 11, 10
Abstract The most advantageous way of managing plastics, according to circular economy assumptions, is recycling, i.e., reusing them. There are three types of plastics recycling: mechanical, chemical and energy recycling. The products of the pyrolysis process can be used for both chemical and energy recycling. Possibilities of further use of pyrolysis products depend on their physicochemical parameters. Getting to know these parameters was the aim of the research, some of which are presented in this article. The paper presents the research position for conducting the pyrolysis process and discusses the results of research on pyrolysis products of waste plastics. The process was conducted to obtain the temperature of 425 degrees C in the pyrolytic chamber. Such a value was chosen on the basis of my own previous research and literature analysis. The focus was on the migration of sulfur and nitrogen, as in some processes these substances may pose a certain problem. Studies have shown high possibilities of migration of these elements in products of pyrolysis process. It has been shown that the migration of sulfur is similar in the case of homogeneous and mixed waste plastics-it immobilizes mainly in pyrolytic oil. Different results were obtained for nitrogen. For homogeneous plastics, nitrogen immobilizes mainly in char and oil, whereas for mixed plastics, nitrogen immobilizes in pyrolytic gas.
PDF https://www.mdpi.com/2076-3417/11/10/4374/pdf?version=1620805542

Similar Articles

ID Score Article
16702 Zeller, M; Netsch, N; Richter, F; Leibold, H; Stapf, D Chemical Recycling of Mixed Plastic Wastes by Pyrolysis - Pilot Scale Investigations(2021)Chemie Ingenieur Technik, 93, 11
26231 Kajda-Szczesniak, M; Scierski, W Studies on the Migration of Sulphur and Chlorine in the Pyrolysis Products of Floor and Furniture Joinery(2023)Energies, 16, 21
19331 Kremer, I; Tomic, T; Katancic, Z; Erceg, M; Papuga, S; Vukovic, JP; Schneider, DR Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor(2021)
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
15503 Antelava, A; Jablonska, N; Constantinou, A; Manos, G; Salaudeen, SA; Dutta, A; Al-Salem, SM Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification(2021)Energy & Fuels, 35, 5
14085 Shan, TL; Wang, KS; Li, Y; Gong, Z; Wang, CS; Tian, XL Study on the kinetics of catalytic pyrolysis of single and mixed waste plastics by spent FCC catalyst(2024)Journal Of Thermal Analysis And Calorimetry, 149, 4
8744 Palmay, P; Haro, C; Huacho, I; Barzallo, D; Bruno, JC Production and Analysis of the Physicochemical Properties of the Pyrolytic Oil Obtained from Pyrolysis of Different Thermoplastics and Plastic Mixtures(2022)Molecules, 27.0, 10
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
17823 Musivand, S; Bracciale, MP; Damizia, M; De Filippis, P; de Caprariis, B Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis(2023)Energies, 16, 13
Scroll