Knowledge Agora



Similar Articles

Title Kinetic and isotherm studies on adsorptive removal of sulfates by cotton shell derived biochar: Recovery of sulfates from marcasite soil
ID_Doc 10454
Authors Rumjit, NP; Samsudin, NA; Low, FW; Thomas, P; Lai, CW; Chellam, PV; Bin Johan, MR; Lim, YC; Amin, N; Tiong, SK
Title Kinetic and isotherm studies on adsorptive removal of sulfates by cotton shell derived biochar: Recovery of sulfates from marcasite soil
Year 2021
Published
Abstract This work illustrates the potential applications of the raw cotton shell (RCS) and cotton shell biochar (CSB) in the remediation of sulfate contaminants from aqueous solvents. Comprehensively, optimal batch and adsorption kinetics of sulfate by RCS and CSB were intensively analyzed and determined by varying the adsorption parameters. For RCS, the optimal series of parameters were at (pH-7, sulfate conc-150 mgL(-1), adsorbent dose- 0.5 g and time-150 min). While for CSB optimum conditions were at (pH-9.8, sulfate conc-100 mgL(-1), dosage- 0.1 g and time-90 min). The maximum adsorption efficiency for both RCS and CSB was achieved at 86.47% and 90.77%, respectively. Sulfate adsorption by RCS and CSB was examined by isotherm models and kinetic studies. The data are best suited to the Langmuir isotherm model with the highest RCS and CSB sulfate adsorption capability of 61.35 and 153.85 mg g(-1) and followed pseudo-second-order kinetics. Box-Behnken design (BBD) based response surface methodology (RSM) model-based analysis of variance test has demonstrated optimum conditions and sulfate adsorption by both RCS and CSB. The recovery studies on sulfates from marcasite soil were evaluated at different doses of RCS and CSB. This study provides insights into the usage of the developed process towards the circular economy of the sulfates.
PDF

Similar Articles

ID Score Article
14799 Medeiros, DCCD; Chelme-Ayala, P; El-Din, MG Sludge-based activated biochar for adsorption treatment of real oil sands process water: Selectivity of naphthenic acids, reusability of spent biochar, leaching potential, and acute toxicity removal(2023)
13435 Fdez-Sanromán, A; Pazos, M; Rosales, E; Sanromán, MA Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review(2020)Applied Sciences-Basel, 10, 21
21431 Sudan, S; Kaushal, J; Khajuria, A; Goyal, H; Mantri, A Bentonite clay-modified coconut biochar for effective removal of fluoride: kinetic, isotherm studies(2024)Adsorption-Journal Of The International Adsorption Society, 30.0, 3-4
24478 Biswal, BK; Balasubramanian, R Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review(2023)Journal Of Environmental Chemical Engineering, 11, 5
6133 Parameswari, E; Kalaiarasi, R; Davamani, V; Kalaiselvi, P; Paulsebastian, S; Ilakiya, T Potentials of surface modified biochar for removal of Cr from tannery effluent and its regeneration to ensure circular economy(2024)Bioremediation Journal, 28, 2
21118 Viotti, P; Marzeddu, S; Antonucci, A; Decima, MA; Lovascio, P; Tatti, F; Boni, MR Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review(2024)Materials, 17.0, 4
28814 Pap, S; Boyd, KG; Taggart, MA; Sekulic, MT Circular economy based landfill leachate treatment with sulphur-doped microporous biochar(2021)
24452 Zhu, HL; Papurello, D; Gandiglio, M; Lanzini, A; Akpinar, I; Shearing, PR; Manos, G; Brett, DJL; Zhang, YS Study of H2S Removal Capability from Simulated Biogas by Using Waste-Derived Adsorbent Materials(2020)Processes, 8, 9
21161 Halder, P; Marzbali, MH; Patel, S; Short, G; Surapaneni, A; Gupta, R; Shah, KL Ammonium nitrogen (NH4+-N) recovery from synthetic wastewater using biosolids-derived biochar(2023)
6368 Hu, JW; Zhao, L; Luo, JM; Gong, HB; Zhu, NW A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives(2022)
Scroll