Knowledge Agora



Similar Articles

Title PHA is not just a bioplastic!
ID_Doc 10467
Authors Park, H; He, HT; Yan, X; Liu, X; Scrutton, NS; Chen, GQ
Title PHA is not just a bioplastic!
Year 2024
Published
Abstract Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale -up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
PDF

Similar Articles

ID Score Article
7729 Koller, M; Mukherjee, A Polyhydroxyalkanoates - Linking Properties, Applications, and End-of-life Options(2020)Chemical And Biochemical Engineering Quarterly, 34, 3
25397 Dalton, B; Bhagabati, P; De Micco, J; Padamati, RB; O'Connor, K A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications(2022)Catalysts, 12, 3
9539 Jaffur, BN; Kumar, G; Jeetah, P; Ramakrishna, S; Bhatia, SK Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications(2023)
8026 Abbas, MI; Amelia, TSM; Bhubalan, K; Vigneswari, S; Ramakrishna, S; Amirul, AAA Bioprospecting waste for polyhydroxyalkanoates production: embracing low carbon bioeconomy(2024)
13152 Ahuja, V; Singh, PK; Mahata, C; Jeon, JM; Kumar, G; Yang, YH; Bhatia, SK A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater(2024)Microbial Cell Factories, 23, 1
12294 Mukherjee, A; Koller, M Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural(2023)Bioengineering-Basel, 10.0, 7
9197 González-Rojo, S; Paniagua-García, AI; Díez-Antolínez, R Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production(2024)Microorganisms, 12.0, 8
27216 Bong, CPC; Alam, MNHZ; Samsudin, SA; Jamaluddin, J; Adrus, N; Yusof, AHM; Ab Muis, Z; Hashim, H; Salleh, MM; Abdullah, AR; Bin Chuprat, BR A review on the potential of polyhydroxyalkanoates production from oil-based substrates(2021)
20576 Zhou, W; Bergsma, S; Colpa, DI; Euverink, GJW; Krooneman, J Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy(2023)
19964 Nur-A-Tomal, MS; Attenborough, E; Mazrad, ZAI; Yang, ZX; Zeng, HL; Holt, P; Holl, MMB; Cameron, NR; Kempe, K; van 't Hag, L Tailoring Pseudomonas putida feedstocks for enhanced medium-chain-length polyhydroxyalkanoate production and biomedical nanoemulsion applications(2024)
Scroll