Knowledge Agora



Similar Articles

Title Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application
ID_Doc 10528
Authors Nicolescu, CM; Bumbac, M; Buruleanu, CL; Popescu, EC; Stanescu, SG; Georgescu, AA; Toma, SM
Title Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application
Year 2023
Published Polymers, 15, 6
Abstract Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
PDF https://www.mdpi.com/2073-4360/15/6/1539/pdf?version=1679310046

Similar Articles

ID Score Article
8405 Cubas-Cano, E; González-Fernández, C; Ballesteros, M; Tomás-Pejó, E Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate(2018)Biofuels Bioproducts & Biorefining-Biofpr, 12.0, 2
13749 Strik, DPBTB; Heusschen, B Microbial Recycling of Polylactic Acid Food Packaging Waste into Carboxylates via Hydrolysis and Mixed-Culture Fermentation(2023)Microorganisms, 11, 8
8342 Madadi, R; Maljaee, H; Serafim, LS; Ventura, SPM Microalgae as Contributors to Produce Biopolymers(2021)Marine Drugs, 19.0, 8
4783 Shogren, R; Wood, D; Orts, W; Glenn, G Plant-based materials and transitioning to a circular economy(2019)
23192 Jodlowski, GS; Strzelec, E Use of glycerol waste in lactic acid bacteria metabolism for the production of lactic acid: State of the art in Poland(2021)Open Chemistry, 19, 1
25215 Kapoor, DD; Yadav, S; Gupta, RK Comprehensive study of microbial bioplastic: present status and future perspectives for sustainable development(2024)Environment Development And Sustainability, 26, 9
15046 Aulitto, M; Fusco, S; Bartolucci, S; Franzén, CJ; Contursi, P Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate(2017)
9979 Shalem, A; Yehezkeli, O; Fishman, A Enzymatic degradation of polylactic acid (PLA)(2024)Applied Microbiology And Biotechnology, 108.0, 1
29138 Reddy, AR Biopolymers Production from Algal Biomass and their Applications- A Review(2022)Journal Of Biochemical Technology, 13.0, 4
13253 Zytner, P; Kumar, D; Elsayed, A; Mohanty, A; Ramarao, BV; Misra, M A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass(2023)Rsc Sustainability, 1, 9
Scroll