Knowledge Agora



Similar Articles

Title Effect of the Addition of Biobased Polyols on the Thermal Stability and Flame Retardancy of Polyurethane and Poly(urea)urethane Elastomers
ID_Doc 10646
Authors Mizera, K; Salasinska, K; Ryszkowska, J; Kuranska, M; Kozera, R
Title Effect of the Addition of Biobased Polyols on the Thermal Stability and Flame Retardancy of Polyurethane and Poly(urea)urethane Elastomers
Year 2021
Published Materials, 14, 7
Abstract Due to the current trends in sustainable development and the reduction in the use of fossil fuels (Green Deal strategy and the circular economy), and thus, the increased interest of the polyurethane industry in polyols derived from renewable sources, it is important to study the impact of these polyols on the flammability of new bioelastomers. The goal of this study was to check the influence of biobased polyols, such as tall oil (TO)-based polyols, soybean oil (SO)-based polyol, and rapeseed oil (RO)-based polyol, on the reduction in the burning and fume emissions of polyurethane and poly(urea)urethane elastomers (EPURs and EPUURs). The thermal stability of these materials was tested using thermogravimetric analysis (TGA). In turn, the flame retardancy and smoke emissions were checked using a cone calorimetry test. The released gases were identified using TGA coupled with Fourier transform infrared (FT-IR) spectroscopy (TGA/FT-IR). Moreover, the morphological and structural characteristics of the char residues were characterized using FT-IR and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The obtained data were compared to the results received for elastomers produced with petroleum substrates. The addition of biobased polyols led to a reduction in the burning as a result of the formation of char, especially RO polyol. Moreover, the TO and RO polyols increased the thermal stability of the elastomers.
PDF https://www.mdpi.com/1996-1944/14/7/1805/pdf

Similar Articles

ID Score Article
13106 Sarim, M; Nikje, MMA; Dargahi, M Preparation and Characterization of Polyurethane Rigid Foam Nanocomposites from Used Cooking Oil and Perlite(2023)
16832 Kuranska, M; Leszczynska, M; Malewska, E; Prociak, A; Ryszkowska, J Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams(2020)Polymers, 12, 9
29536 Sarim, M; Nikje, MMA; Dargah, M Synthesis and characterization of polyurethane rigid foam by using feedstocks received from renewable and recyclable resources(2023)Journal Of Porous Materials, 30.0, 4
20274 Kuranska, M; Polaczek, K; Auguscik-Królikowska, M; Prociak, A; Ryszkowska, J Open-cell polyurethane foams based on modified used cooking oil(2020)Polimery, 65, 3
13977 Paciorek-Sadowska, J; Borowicz, M; Chmiel, E; Lubczak, J Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation(2021)International Journal Of Molecular Sciences, 22, 1
9016 Ivdre, A; Abolins, A; Volkovs, N; Vevere, L; Paze, A; Makars, R; Godina, D; Rizikovs, J Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols(2023)Polymers, 15.0, 14
27235 Kuranska, M; Leszczynska, M; Kubacka, J; Prociak, A; Ryszkowska, J Effects of Modified Used Cooking Oil on Structure and Properties of Closed-Cell Polyurethane foams(2020)Journal Of Polymers And The Environment, 28.0, 10
Scroll