Knowledge Agora



Similar Articles

Title Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation
ID_Doc 10677
Authors Kokkinos, E; Zouboulis, A
Title Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation
Year 2020
Published Water, 12, 3
Abstract Tanneries produce significant quantities of hazardous waste/waters and, according to international environmental organizations, their further recycling/reuse/exploitation in the context of circular economy is considered mandatory. A relevant case study is the recovery of Cr(III), used in large amounts during the tanning process, which can be recovered from the corresponding industrial waste/sludge. The aim of this work is to optimize the Cr(III) hydrometallurgical recovery from the tannery sludge by examining the major experimental conditions that affect the efficiency of its different sequential steps, namely extraction/leaching and precipitation. The chemical characterization revealed that tannery sludge contains high amounts of Cr(III) (14.1%), Ca (14.8%), and organic matter (22%). The extraction of Cr(III) was examined by applying various common acids (H2SO4, HNO3, HCl) in the concentration range of 0.02-2 N. The highest selectivity and efficiency (93%) were obtained by the addition of H2SO4 as the insoluble CaSO4 and soluble CrSO4+ species were formed. Regarding the experimental conditions, only the increase in temperature showed a positive effect on Cr recovery. The Cr(III) can be further precipitated from the resulting leaching solution by increasing the equilibrium pH; the precipitate with the higher purity in Cr(OH)(3) (70%) was obtained by the application of NaOH and could possibly be reused by tanneries.
PDF https://www.mdpi.com/2073-4441/12/3/719/pdf?version=1583493021

Similar Articles

ID Score Article
5897 Kokkinos, E; Proskynitopoulou, V; Zouboulis, A Chromium and energy recovery from tannery wastewater treatment waste: Investigation of major mechanisms in the framework of circular economy(2019)Journal Of Environmental Chemical Engineering, 7, 5
30037 Staszak, K; Kruszelnicka, I; Ginter-Kramarczyk, D; Góra, W; Baraniak, M; Lota, G; Regel-Rosocka, M Advances in the Removal of Cr(III) from Spent Industrial Effluents-A Review(2023)Materials, 16.0, 1
17269 Kabir, MM; Nahar, N; Akter, MM; Alam, F; Gilroyed, BH; Misu, MM; Didar-ul-Alam, M; Hakim, M; Tijing, L; Shon, HK Agro-waste-based functionalized and economic adsorbents for the effective treatment of toxic contaminants from tannery effluent(2023)
28326 Hossain, MA; Sultana, R; Moktadir, MA; Hossain, MA A novel bio-adsorbent development from tannery solid waste derived biodegradable keratin for the removal of hazardous chromium: A cleaner and circular economy approach(2023)
27863 Kowalik-Klimczak, A; Lozynska, M; Zycki, M; Schadewell, C; Fiehn, T; Wozniak, B; Flisek, M Valorisation of Tannery Waste to Recover Chromium with a View to Reusing It in Industrial Practise(2024)Membranes, 14.0, 6
14273 Tian, H; Wang, LB; Xu, YM; Du, YG; Ma, YP; Chen, Y; Ye, HP; Chen, SH; Zhang, TC Efficient reduction of Cr(VI) and recovery of Fe from chromite ore processing residue by waste biomass(2023)
22259 Muedi, KL; Masindi, V; Maree, JP; Brink, HG Rapid Removal of Cr(VI) from Aqueous Solution Using Polycationic/Di-Metallic Adsorbent Synthesized Using Fe3+/Al3+ Recovered from Real Acid Mine Drainage(2022)Minerals, 12.0, 10
14343 Ghanim, B; Leahy, JJ; O'Dwyer, TF; Kwapinski, W; Pembroke, JT; Murnane, JG Removal of hexavalent chromium (Cr(VI)) from aqueous solution using acid-modified poultry litter-derived hydrochar: adsorption, regeneration and reuse(2022)Journal Of Chemical Technology And Biotechnology, 97, 1
Scroll