Knowledge Agora



Similar Articles

Title Performance evaluation of integrated air pollution control with alkaline waste valorization via high-gravity technology
ID_Doc 10705
Authors Pei, SL; Pan, SY; Li, YM; Gao, X; Chiang, PC
Title Performance evaluation of integrated air pollution control with alkaline waste valorization via high-gravity technology
Year 2018
Published
Abstract In this study, a high-gravity process using alkaline wastes, i.e., petroleum coke fly ash, was proposed for integrated air pollution control, including nitrogen oxides, carbon dioxide and particulate matters. After the control process, the reacted fly ash can be further utilized as supplementary cementitious materials in cement mortar to realize a circular economy. The performance of air pollution control using petroleum coke fly ash in a high-gravity process was evaluated by on-site operations. The results indicated that the removal ratios of nitrogen oxides, carbon dioxide and particulate matters in the flue gas were approximately 99% (in the presence of ozone), 95% and 80%, respectively. In addition, the kinetics of carbon dioxide removal in the high-gravity process was analyzed by a surface coverage model. A high reaction rate constant of 0.27 mol/min/m(2) was reached under a liquid-to-solid of 20 mL/g and a rotating speed of 1000 rpm at 20 degrees C. Furthermore, the performance of reacted fly ash used in blended cement mortar was evaluated. Compared with the pure Portland cement mortar, the compressive strength of cement mortar with reacted fly ash can be increased by 26%. Lastly, a preliminary economic analysis was conducted to estimate the costs and benefits from the process. (C) 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
18496 Fernando, S; Gunasekara, C; Law, DW; Nasvi, MCM; Setunge, S; Dissanayake, R Life cycle assessment and cost analysis of fly ash-rice husk ash blended alkali-activated concrete(2021)
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
15678 Czop, M; Lazniewska-Piekarczyk, B; Kajda-Szczesniak, M Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials-A Case Study(2022)Energies, 15, 23
24032 Yalcinkaya, B; Spirek, T; Bousa, M; Louda, P; Ruzek, V; Rapiejko, C; Buczkowska, KE Unlocking the Potential of Biomass Fly Ash: Exploring Its Application in Geopolymeric Materials and a Comparative Case Study of BFA-Based Geopolymeric Concrete against Conventional Concrete(2023)Ceramics-Switzerland, 6, 3
3238 Morales, LF; Herrera, K; López, JE; Aguado, R; Saldarriaga, JF Circular economy strategy for the valorization of fly ash as a substitute for cement in monoliths (resistance and reactivity evaluation)(2024)Environmental Progress & Sustainable Energy, 43, 3
19603 Fernando, S; Gunasekara, C; Law, DW; Nasvi, MCM; Setunge, S; Dissanayake, R; Robert, D Environmental evaluation and economic analysis of fly ash-rice husk ash blended alkali-activated bricks(2022)
21949 Vilarinho, IS; Guimaraes, G; Labrincha, JA; Seabra, MP Development of Eco-Mortars with the Incorporation of Municipal Solid Wastes Incineration Ash(2023)Materials, 16.0, 21
13661 Fort, J; Sál, J; Sevcík, R; Dolezelová, M; Keppert, M; Jerman, M; Záleská, M; Stehel, V; Cerny, R Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects(2021)
30027 Ho, HL; Huang, R; Hwang, LC; Lin, WT; Hsu, HM Waste-Based Pervious Concrete for Climate-Resilient Pavements(2018)Materials, 11.0, 6
15853 Rao, AV; Rao, KS Effect of Fly Ash on Strength of Concrete(2020)
Scroll