Knowledge Agora



Similar Articles

Title Valorization of environmental-burden waste towards microalgal metabolites production
ID_Doc 10717
Authors Sharma, S; Show, PL; Aminabhavi, TM; Sevda, S; Garlapati, VK
Title Valorization of environmental-burden waste towards microalgal metabolites production
Year 2023
Published
Abstract The present study develops a novel concept of using waste media as an algal nutrient resource compared to the usual growth media with the aid of growth kinetics study and metabolite production abilities. Food-and agri-compost wastes are compact structures with elemental compounds for microbial media. As a part of the study, environ-burden wastes (3:1) as a food source for photosynthetic algae as a substitute for the costly nutrient media were proposed. The environment-burden waste was also envisaged for macromolecule production, i.e., 99200 mu g/ml lipid, 112.5 mu g/ml protein, and 8.75 mu g/ml carbohydrate with different dilutions of agri-waste, bold basal media (BBM), and Food waste, respectively. The fabricated growth kinetics and dynamics showcased the unstructured models of different photosynthetic algal growth phases and the depiction of productivity and kinetic parameters. The theoretical maximum biomass concentration (Xp) was found to be more (0.871) with diluted agricompost media than the usual BBM (0.697). The X-Lim values were found to be 0.362, 0.323 and 0.209 for BBM, diluted agri-compost media and diluted food waste media, respectively. Overall, the study proposes a cleaner approach of utilizing the wastes as growth media through a circular economy approach which eventually reduces the growth media cost with integrated macromolecule production capabilities.
PDF https://doi.org/10.1016/j.envres.2023.115320

Similar Articles

ID Score Article
1801 Giwa, A; Abuhantash, F; Chalermthai, B; Taher, H Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review(2022)Sustainability, 14, 17
20609 Hubenov, V; Ivanova, J; Nacheva, L; Kabaivanova, L Agricultural waste utilization for biomethane and algae-based fertilizer production for circular economy(2023)Bulgarian Journal Of Agricultural Science, 29, 6
24747 Sarma, S; Sharma, S; Rudakiya, D; Upadhyay, J; Rathod, V; Patel, A; Narra, M Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery(2021)3 Biotech, 11, 8
16921 Olguín, EJ; Sánchez-Galván, G; Arias-Olguín, II; Melo, FJ; González-Portela, RE; Cruz, L; De Philippis, R; Adessi, A Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds(2022)Biology-Basel, 11, 8
2956 Chhandama, M; Rai, PK; Lalawmpuii Coupling bioremediation and biorefinery prospects of microalgae for circular economy(2023)
13976 Avila, R; Carrero, E; Vicent, T; Blánquez, P Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae(2021)
10259 Tawfik, A; Ismail, S; Elsayed, M; Qyyum, MA; Rehan, M Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives(2022)
1884 Fuentes-Grünewald, C; Gayo-Peláez, JI; Ndovela, V; Wood, E; Kapoore, RV; Llewellyn, CA Towards a circular economy: A novel microalgal two-step growth approach to treat excess nutrients from digestate and to produce biomass for animal feed(2021)
23632 Abomohra, A; Almutairi, AW A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery(2020)
13081 Magalhaes, IB; Ferreira, J; Castro, JD; Assis, LRD; Calijuri, ML Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems(2022)
Scroll