Knowledge Agora



Similar Articles

Title Influence of the Feedstock on the Process Parameters, Product Composition and Pilot-Scale Cracking of Plastics
ID_Doc 10733
Authors Fraczak, D; Fabis, G; Orlinska, B
Title Influence of the Feedstock on the Process Parameters, Product Composition and Pilot-Scale Cracking of Plastics
Year 2021
Published Materials, 14, 11
Abstract Chemical recycling of polymers can lead to many different products and play a significant role in the circular economy through the use of plastic waste as a feedstock in the production of valuable materials. The polyolefins: polyethylene (PE) and polypropylene (PP), together with polystyrene (PS), can be chemically recycled by the thermal cracking (pyrolysis) process. In this study, continuous cracking of polyolefins and polystyrene in different proportions and with the addition of other polymers, like polyethylene terephthalate (PET) and polyvinyl chloride (PVC), was investigated at the pilot scale in terms of the process parameters and product yields. Gas chromatography with mass spectrometry (GC-MS) was used for the detailed analysis of the products' compositions. The boiling temperature distribution and the bromine number were used for additional characterization of products. It was found that an increase of PP share caused a decrease in the process temperature, an increase of the product yield and a shift of the boiling range towards lighter products, increasing the content levels for unsaturates and branched hydrocarbons. It was observed that the addition of 5% PS, PET and PVC reduced the overall product yield, resulting in the creation of a lower-boiling product and increasing the conversion of polyethylene. An addition of 10% polystyrene increased the PP conversion and resulted in a higher product yield, without significant change in the boiling temperatures distribution.
PDF https://www.mdpi.com/1996-1944/14/11/3094/pdf?version=1623036790

Similar Articles

ID Score Article
4067 Erkmen, B; Ozdogan, A; Ezdesir, A; Celik, G Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?(2023)Polymers, 15, 4
14821 Forero-Franco, R; Cañete-Vela, I; Berdugo-Vilches, T; González-Arias, J; Maric, J; Thunman, H; Seemann, M Correlations between product distribution and feedstock composition in thermal cracking processes for mixed plastic waste(2023)
17200 Gracida-Alvarez, UR; Benavides, PT; Lee, US; Wang, MC Life-cycle analysis of recycling of post-use plastic to plastic via pyrolysis(2023)
17823 Musivand, S; Bracciale, MP; Damizia, M; De Filippis, P; de Caprariis, B Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis(2023)Energies, 16, 13
22658 Jablonska, B; Poznanska, G; Jablonski, P; Zwolinska, J Thermochemical Valorization of Plastic Waste Containing Low Density Polyethylene, Polyvinyl Chloride and Polyvinyl Butyral into Thermal and Fuel Energy(2024)Energies, 17.0, 14
16996 Seitz, M; Schröter, S Catalytic Depolymerization of Polyolefinic Plastic Waste(2022)
19254 Jangid, CJ; Miller, KM; Seay, JR Analysis of Plastic-Derived Fuel Oil Produced from High- and Low-Density Polyethylene(2022)Recycling, 7.0, 3
15168 Shaker, M; Kumar, V; Saffron, CM; Rabnawaz, M Revolutionizing Plastics Chemical Recycling with Table Salt(2024)Advanced Sustainable Systems, 8, 1
19840 Darko, C; Yung, PWS; Chen, AL; Acquaye, A Review and recommendations for sustainable pathways of recycling commodity plastic waste across different economic regions(2023)
17979 Horváth, D; Tomasek, S; Miskolczi, N Value-Added Pyrolysis of Waste Sourced High Molecular Weight Hydrocarbon Mixtures(2022)Energies, 15, 3
Scroll