Knowledge Agora



Similar Articles

Title Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy
ID_Doc 10749
Authors Martin-Espejo, JL; Gandara-Loe, J; Odriozola, JA; Reina, TR; Pastor-Perez, L
Title Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy
Year 2022
Published
Abstract The conversion of biogas, mainly formed of CO2 and CH4, into high-value platform chemicals is increasing attention in a context of low-carbon societies. In this new paradigm, acetic acid (AA) is deemed as an interesting product for the chemical industry. Herein we present a fresh overview of the current manufacturing approaches, compared to potential low-carbon alternatives. The use of biogas as primary feedstock to produce acetic acid is an auspicious alternative, representing a step-ahead on carbon-neutral industrial processes. Within the spirit of a circular economy, we propose and analyse a new BIO-strategy with two noteworthy pathways to potentially lower the environmental impact. The generation of syngas via dry reforming (DRM) combined with CO2 utilisation offers a way to produce acetic acid in a two-step approach (BIO-Indirect route), replacing the conventional, petroleum-derived steam reforming process. The most recent advances on catalyst design and technology are discussed. On the other hand, the BIO-Direct route offers a ground-breaking, atom-efficient way to directly generate acetic acid from biogas. Nevertheless, due to thermodynamic restrictions, the use of plasma technology is needed to directly produce acetic acid. This very promising approach is still in an early stage. Particularly, progress in catalyst design is mandatory to enable low-carbon routes for acetic acid production.
PDF https://doi.org/10.1016/j.scitotenv.2022.156663

Similar Articles

ID Score Article
12414 Baena-Moreno, FM; Pastor-Pérez, L; Zhang, ZE; Reina, TR Stepping towards a low-carbon economy. Formic acid from biogas as case of study(2020)
13260 Heffernan, JK; Lai, CY; Gonzalez-Garcia, RA; Nielsen, LK; Guo, JH; Marcellin, E Biogas upgrading using Clostridium autoethanogenum for value-added products(2023)
14755 Sarkar, O; Modestra, JA; Rova, U; Christakopoulos, P; Matsakas, L Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution(2023)Fermentation-Basel, 9, 4
19949 Tommasi, M; Degerli, SN; Ramis, G; Rossetti, I Advancements in CO2 methanation: A comprehensive review of catalysis, reactor design and process optimization(2024)
28526 Ewing, TA; Nouse, N; van Lint, M; van Haveren, J; Hugenholtz, J; van Es, DS Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022-2050(2022)Green Chemistry, 24.0, 17
14827 Battista, F; Frison, N; Pavan, P; Cavinato, C; Gottardo, M; Fatone, F; Eusebi, AL; Majone, M; Zeppilli, M; Valentino, F; Fino, D; Tommasi, T; Bolzonella, D Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts(2020)Journal Of Chemical Technology And Biotechnology, 95, 2
7052 Paniagua, S; Lebrero, R; Muñoz, R Syngas biomethanation: Current state and future perspectives(2022)
7501 Attard, TM; Clark, JH; McElroy, CR Recent developments in key biorefinery areas(2020)
13563 Wu, BT; Lin, RC; O'Shea, R; Deng, C; Rajendran, K; Murphy, JD Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system(2021)
23658 Bobadilla, LF; Azancot, L; González-Castaño, M; Ruíz-López, E; Pastor-Pérez, L; Durán-Olivencia, FJ; Ye, RP; Chong, KT; Blanco-Sánchez, PH; Wu, ZT; Reina, TR; Odriozola, JA Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation(2024)
Scroll