Knowledge Agora



Similar Articles

Title Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials
ID_Doc 10788
Authors Yan, B; Zheng, JJ; Feng, L; Zhang, Q; Zhang, CM; Ding, YC; Han, JQ; Jiang, SH; He, SJ
Title Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials
Year 2023
Published
Abstract As the world's demand for green energy storage systems continues to increase, electrochemical doublelayer supercapacitors based on porous carbon electrodes are receiving more attention than ever. Porous carbon materials can be designed and synthesized from biomass residues/extracts through various technologies, which realizes the value-added utilization of biomass and meets the targets of circular economy. Pore characteristics are particularly important for the capacitive performance of carbon-based electrodes. This review outlines the biomass-derived porous carbon materials and their corresponding capacitive properties, which are divided into biomass-derived ultra/super-microporous carbon, mesoporous carbon, macroporous carbon and hierarchical porous carbon according to the category of pore size. The synthesis methods, pore characteristic testing probes/calculation models and capacitance performance are discussed in detail, and the corresponding advantages and bottlenecks are pointed out critically. Emphasis is laid on the research status and development trend of biomass-derived hierarchical porous carbon materials, including the effects of the structure and composition of biomass precursors, advanced nanotechnologies and the proportion of various pores in carbonaceous products on the capacitance performance. Finally, the coping strategies are proposed for the further development of high capacitance biomass-derived porous carbon materials.(C) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PDF https://doi.org/10.1016/j.matdes.2023.111904

Similar Articles

ID Score Article
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
23425 Jafari, M; Botte, GG Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors(2024)Acs Omega, 9, 11
26987 Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application(2024)
8795 Mamani, A; Barreda, D; Sardella, MF; Bavio, M; Blanco, C; González, Z; Santamaría, R Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes(2024)
12159 Alcaraz, L; Adán-Más, A; Arévalo-Cid, P; Montemor, MD; López, FA RETRACTED: Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors (Retracted article. See vol. 11, 2023)(2020)
28772 Kalyani, P; Banuprabha, TR; Velkannan, V Activated carbon from banyan prop root biomass and its application in pseudocapacitors: a strategy towards circular economy for energy(2021)Ionics, 27.0, 3
13378 Guo, XY; Zhang, XS; Wang, YX; Tian, XD; Qiao, Y Converting furfural residue wastes to carbon materials for high performance supercapacitor(2022)Green Energy & Environment, 7, 6
19475 Ngidi, NPD; Koekemoer, AF; Ndlela, SS Application of metal oxide/porous carbon nanocomposites in electrochemical capacitors: A review(2024)
26400 Pal, B; Yasin, A; Sunil, V; Sofer, Z; Yang, CC; Jose, R Enhancing the materials circularity: from laboratory waste to electrochemical capacitors(2022)
27775 Gao, M; Pan, SY; Chen, WC; Chiang, PC A cross-disciplinary overview of naturally derived materials for electrochemical energy storage(2018)
Scroll