Knowledge Agora



Similar Articles

Title A review of direct recycling methods for spent lithium-ion batteries
ID_Doc 11073
Authors Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM
Title A review of direct recycling methods for spent lithium-ion batteries
Year 2024
Published
Abstract The increasing demand for lithium -ion batteries (LIBs) in new energy storage systems and electric vehicles implies a surge in both the shipment and scrapping of LIBs. LIBs contain a lot of harmful substances, and improper disposal can cause severe environment damage. Developing efficient recycling technology has become the key to the sustainable growth of the LIBs industry. At present, the extraction of high -value materials from spent LIBs using pyrometallurgical and hydrometallurgical processes is most usual. However, they consume a lot of energy and lead to secondary environmental pollution, which is not consistent with the idea of creating a green circular economy. Direct recycling has been suggested as a possible alternative method of dealing with the spent LIBs under non-destructive conditions in the further. Compared with traditional metallurgical technologies, direct regeneration significantly reduces the consumption of energy and chemical reagents, and has a high selectivity for certain metal ions, which is environmentally friendly. However, direct cycling is still in its infancy with many scientific and technological barriers. In this review, we first consider the necessity of recycling spent LIBs, and then summarize the failure mechanisms of degraded cathode materials in order to choose a corresponding regeneration method. The direct cycling technologies, including hydrothermal, solid-state, eutectic medium and electrochemical regeneration are introduced separately from the perspective of the experimental process, operating parameters, regeneration principles, advantages, and effects. Furthermore, the current problems and potential future research on the direct cycling of spent LIBs are also discussed.
PDF

Similar Articles

ID Score Article
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
30033 Prazanová, A; Plachy, Z; Koci, J; Fridrich, M; Knap, V Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation(2024)Batteries-Basel, 10.0, 3
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
29586 Makuza, B; Tian, QH; Guo, XY; Chattopadhyay, K; Yu, DW Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review(2021)
12349 Wu, XX; Liu, YH; Wang, JX; Tan, YH; Liang, Z; Zhou, GM Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability(2024)Advanced Materials, 36.0, 32
13521 Tembo, PM; Dyer, C; Subramanian, V Lithium-ion battery recycling-a review of the material supply and policy infrastructure(2024)Npg Asia Materials, 16, 1
7234 Popescu, IA; Dorneanu, SA; Truta, RM; Ilea, P RECENT RESEARCH RELATED TO Li-ION BATTERY RECYCLING PROCESSES-A REVIEW(2022)Studia Universitatis Babes-Bolyai Chemia, 67, 1
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
Scroll