Knowledge Agora



Similar Articles

Title Free nitrous acid-assisted bioresource recovery from anaerobic digestion of organic materials
ID_Doc 11074
Authors Akaniro, IR; Zhao, J; Nyoyoko, VF; Onwosi, CO
Title Free nitrous acid-assisted bioresource recovery from anaerobic digestion of organic materials
Year 2024
Published Journal Of Environmental Chemical Engineering, 12, 3
Abstract Considering recent research trends, increasing resource recovery from the anaerobic fermentation of organic materials demands more efficient biodegradability of substrates, as well as suppressing the activities of undesirable microbes while promoting the activities of the desired ones. The utilization of substrate pretreatment technologies has been the predominant control strategies to accelerate the start-up process and enhance the efficiency of anaerobic digestion systems. Notwithstanding, many traditional pretreatment technologies have major drawbacks such as augmenting substrates degradability with little modulatory effects on microbial function in the process. Additionally, their high energy costs and concomitant environmental consequences necessitate the development of non- polluting, less energy intensive and sustainable pretreatment candidates. Along these lines, applications have emerged where free nitrous acid is used to augment the breakdown of organic wastes and inactivate microbes of competing pathways, resulting in enhanced bioresource yields from anaerobic fermentation. Free nitrous acid is produced from nitritation of digester liquors, ensuring its renewable supply in biological systems and making it particularly attractive for advancing circular economy. Hence, free nitrous acid utilization is a promising alternative method to beneficially exploit substrate and microbial activities in the different stages of anaerobic digestion such as hydrolysis, acidogenesis and methanogenesis for the dual benefits of sustainable waste management and enhanced resources yield. Overall, the findings of this review summarize for the first time the potential roles of free nitrous acid as a green pretreatment technology to profoundly enhance the efficiency of anaerobic digestion systems.
PDF

Similar Articles

ID Score Article
9327 Menzel, T; Neubauer, P; Junne, S Role of Microbial Hydrolysis in Anaerobic Digestion(2020)Energies, 13.0, 21
11051 Capson-Tojo, G; Rouez, M; Crest, M; Steyer, JP; Delgenès, JP; Escudié, R Food waste valorization via anaerobic processes: a review(2016)Reviews In Environmental Science And Bio-Technology, 15, 3
25671 Cui, Y; Zhao, BW; Zhang, X; Ma, X; Zhou, AJ; Wang, SF; Yue, XP; Li, JZ; Meng, J Denitrification performance and in-situ fermentation mechanism of the wastepaper-flora slow-release carbon source(2023)
10455 Sevillano, CA; Pesantes, AA; Carpio, EP; Martínez, EJ; Gómez, X Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario(2021)Entropy, 23, 2
8258 Nagarajan, S; Jones, RJ; Oram, L; Massanet-Nicolau, J; Guwy, A Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids-A Perspective(2022)Fermentation-Basel, 8.0, 7
7987 Chew, KR; Leong, HY; Khoo, KS; Vo, DVN; Anjum, H; Chang, CK; Show, PL Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review(2021)Environmental Chemistry Letters, 19, 4
22619 De Groof, V; Coma, M; Arnot, T; Leak, DJ; Lanham, AB Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation(2019)Molecules, 24.0, 3
10715 Mohanakrishna, G; Sneha, NP; Rafi, SM; Sarkar, O Dark fermentative hydrogen production: Potential of food waste as future energy needs(2023)
25801 Kora, E; Antonopoulou, G; Zhang, Y; Yan, Q; Lyberatos, G; Ntaikou, I Investigating the efficiency of a two-stage anaerobic-aerobic process for the treatment of confectionery industry wastewaters with simultaneous production of biohydrogen and polyhydroxyalkanoates.(2024)
12398 Archana, K; Visckram, AS; Kumar, PS; Manikandan, S; Saravanan, A; Natrayan, L A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals(2024)
Scroll