Knowledge Agora



Similar Articles

Title Integrated catalytic insights into methanol production: Sustainable framework for CO2 conversion
ID_Doc 11090
Authors Bhardwaj, R; Sharma, T; Nguyen, DD; Cheng, CK; Lam, SS; Xia, CL; Nadda, AK
Title Integrated catalytic insights into methanol production: Sustainable framework for CO2 conversion
Year 2021
Published
Abstract A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.
PDF

Similar Articles

ID Score Article
13922 Ullah, A; Hashim, NA; Rabuni, MF; Junaidi, MUM A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency(2023)Energies, 16, 3
7013 Mishra, S; Singh, PK; Mohanty, P; Adhya, TK; Sarangi, PK; Srivastava, RK; Jena, J; Das, T; Hota, PK Green synthesis of biomethanol-managing food waste for carbon footprint and bioeconomy(2022)Biomass Conversion And Biorefinery, 12, 5
33071 Chakrabortty, S; Nayak, J; Ruj, B; Pal, P; Kumar, R; Banerjee, S; Sardar, M; Chakraborty, P Photocatalytic conversion of CO2 to methanol using membrane-integrated Green approach: A review on capture, conversion and purification(2020)Journal Of Environmental Chemical Engineering, 8.0, 4
27468 Ravanchi, MT; Sahebdelfar, S Catalytic conversions of CO2 to help mitigate climate change: Recent process developments(2021)
24861 Yusuf, N; Almomani, F; Qiblawey, H Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments(2023)
24215 Perathoner, S; Van Geem, KM; Marin, GB; Centi, G Reuse of CO2 in energy intensive process industries(2021)Chemical Communications, 57, 84
19614 Centi, G; Perathoner, S Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources(2020)
19949 Tommasi, M; Degerli, SN; Ramis, G; Rossetti, I Advancements in CO2 methanation: A comprehensive review of catalysis, reactor design and process optimization(2024)
10603 Alli, YA; Oladoye, PO; Ejeromedoghene, O; Bankole, OM; Alimi, OA; Omotola, EO; Olanrewaju, CA; Philippot, K; Adeleye, AS; Ogunlaja, AS Nanomaterials as catalysts for CO2 transformation into value-added products: A review(2023)
21563 Chatzis, A; Gkotsis, P; Zouboulis, A Biological methanation (BM): A state-of-the-art review on recent research advancements and practical implementation in full-scale BM units(2024)
Scroll