Knowledge Agora



Similar Articles

Title Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery
ID_Doc 11117
Authors Shekhar, S; Hoque, ME; Bajpai, PK; Islam, H; Sharma, B
Title Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery
Year 2024
Published Environment Development And Sustainability, 26, 3
Abstract The fact that the majority of the presently utilized plastics are not 100% recyclable has engendered acute environmental issues, induced significant losses to the global economy, and exhausted finite natural resources. Encumbrances to recycling commodity polymers comprehend segregation, adulterants, and degradation of macromolecular structures, the whole of which can pessimistically influence the characteristics of recycled materials. Capturing the value back from plastic waste has been the holy grail of recyclers. A charismatic alternative is to recover high-valued monomers and purify them for polymerization. The burgeoning of chemical recycling processes could appreciably aid the gradation of the present-day linear model of plastic production and consumption-where finite resources are utilized to build products that have a limited lifespan and are then disposed of-to an ideal, sustainable, circular economy that curtails waste and aggrandize resource use. Herein, we proffer a holistic view for perceiving a circular polymer economy based on the chemical recycling approach for sustainability. We briefly review trailblazing techniques to chemically recycle commercial plastics. Accordingly, selected highlights on significant advancement and the technical and environmental benefits attained in the development of repurposing and depolymerization processes are presented. We conclude by discussing the main challenges concerning the current-day industrial reality that grounds it in relevant polymer science, delivering an academic angle as well as an applied one. This journey toward a new plastic future will optimize resource efficiency across chemical value chains and empower a closed-loop, waste-free chemical industry.
PDF

Similar Articles

ID Score Article
24607 Chen, H; Wan, K; Zhang, YY; Wang, YQ Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future(2021)Chemsuschem, 14, 19
20486 Mangold, H; von Vacano, B The Frontier of Plastics Recycling: Rethinking Waste as a Resource for High-Value Applications(2022)Macromolecular Chemistry And Physics, 223, 13
8799 Clark, RA; Shaver, MP Depolymerization within a Circular Plastics System(2024)Chemical Reviews, 124.0, 5
23588 Payne, J; Jones, MD The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities(2021)Chemsuschem, 14, 19
23446 Nicholson, SR; Rorrer, JE; Singh, A; Konev, MO; Rorrer, NA; Carpenter, AC; Jacobsen, AJ; Román-Leshkov, Y; Beckham, GT The Critical Role of Process Analysis in Chemical Recycling and Upcycling of Waste Plastics(2022)
7476 Martínez-Narro, G; Hassan, S; Phan, AN Chemical recycling of plastic waste for sustainable polymer manufacturing - A critical review(2024)Journal Of Environmental Chemical Engineering, 12, 2
16254 Hong, M; Chen, EYX Chemically recyclable polymers: a circular economy approach to sustainability(2017)Green Chemistry, 19, 16
5026 Satti, SM; Hashmi, M; Subhan, M; Shereen, MA; Fayad, A; Abbasi, A; Shah, AA; Ali, HM Bio-upcycling of plastic waste: a sustainable innovative approach for circular economy(2024)Water Air And Soil Pollution, 235, 6
20669 Pandey, KP; Jha, UR; Kushwaha, J; Priyadarsini, M; Meshram, SU; Dhoble, AS Practical ways to recycle plastic: current status and future aspects(2023)Journal Of Material Cycles And Waste Management, 25, 3
28435 Highmoore, JF; Kariyawasam, LS; Trenor, SR; Yang, Y Design of depolymerizable polymers toward a circular economy(2024)Green Chemistry, 26.0, 5
Scroll