Knowledge Agora



Similar Articles

Title Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural
ID_Doc 12294
Authors Mukherjee, A; Koller, M
Title Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural
Year 2023
Published Bioengineering-Basel, 10.0, 7
Abstract Global pollution from fossil plastics is one of the top environmental threats of our time. At their end-of-life phase, fossil plastics, through recycling, incineration, and disposal result in microplastic formation, elevated atmospheric CO2 levels, and the pollution of terrestrial and aquatic environments. Current regional, national, and global regulations are centered around banning plastic production and use and/or increasing recycling while ignoring efforts to rapidly replace fossil plastics through the use of alternatives, including those that occur in nature. In particular, this review demonstrates how microbial polyhydroxyalkanoates (PHAs), a class of intrinsically natural polymers, can successfully remedy the fossil and persistent plastic dilemma. PHAs are bio-based, biosynthesized, biocompatible, and biodegradable, and thus, domestically and industrially compostable. Therefore, they are an ideal replacement for the fossil plastics pollution dilemma, providing us with the benefits of fossil plastics and meeting all the requirements of a truly circular economy. PHA biopolyesters are natural and green materials in all stages of their life cycle. This review elaborates how the production, consumption, and end-of-life profile of PHAs are embedded in the current and topical, 12 Principles of Green Chemistry, which constitute the basis for sustainable product manufacturing. The time is right for a paradigm shift in plastic manufacturing, use, and disposal. Humankind needs alternatives to fossil plastics, which, as recalcitrant xenobiotics, contribute to the increasing deterioration of our planet. Natural PHA biopolyesters represent that paradigm shift.
PDF https://www.mdpi.com/2306-5354/10/7/855/pdf?version=1689748345

Similar Articles

ID Score Article
25397 Dalton, B; Bhagabati, P; De Micco, J; Padamati, RB; O'Connor, K A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications(2022)Catalysts, 12, 3
20576 Zhou, W; Bergsma, S; Colpa, DI; Euverink, GJW; Krooneman, J Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy(2023)
7729 Koller, M; Mukherjee, A Polyhydroxyalkanoates - Linking Properties, Applications, and End-of-life Options(2020)Chemical And Biochemical Engineering Quarterly, 34, 3
8026 Abbas, MI; Amelia, TSM; Bhubalan, K; Vigneswari, S; Ramakrishna, S; Amirul, AAA Bioprospecting waste for polyhydroxyalkanoates production: embracing low carbon bioeconomy(2024)
4306 Najar, IN; Sharma, P; Das, R; Mondal, K; Singh, AK; Tamang, S; Hazra, P; Thakur, N; Bhanwaria, R; Gandhi, SG; Kumar, V In search of poly-3-hydroxybutyrate (PHB): A comprehensive review unveiling applications and progress in fostering a sustainable bio-circular economy(2024)
6593 Abu-Thabit, NY; Pérez-Rivero, C; Uwaezuoke, OJ; Ngwuluka, NC From waste to wealth: upcycling of plastic and lignocellulosic wastes to PHAs(2022)Journal Of Chemical Technology And Biotechnology, 97, 12
23701 Adeleye, AT; Odoh, CK; Enudi, OC; Banjoko, OO; Osiboye, OO; Odediran, ET; Louis, H Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass(2020)
25215 Kapoor, DD; Yadav, S; Gupta, RK Comprehensive study of microbial bioplastic: present status and future perspectives for sustainable development(2024)Environment Development And Sustainability, 26, 9
13253 Zytner, P; Kumar, D; Elsayed, A; Mohanty, A; Ramarao, BV; Misra, M A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass(2023)Rsc Sustainability, 1, 9
21364 Rajvanshi, J; Sogani, M; Kumar, A; Arora, S; Syed, Z; Sonu, K; Sen Gupta, N; Kalra, A Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy(2023)
Scroll