Knowledge Agora



Similar Articles

Title Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid
ID_Doc 12310
Authors Vieceli, N; Casasola, R; Lombardo, G; Ebin, B; Petranikova, M
Title Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid
Year 2021
Published
Abstract The growing demand for lithium-ion batteries will result in an increasing flow of spent batteries, which must be recycled to prevent environmental and health problems, while helping to mitigate the raw materials dependence and risks of shortage and promoting a circular economy. Combining pyrometallurgical and hydrometallurgical recycling approaches has been the focus of recent studies, since it can bring many advantages. In this work, the effects of incineration on the leaching efficiency of metals from EV LIBs were evaluated. The thermal process was applied as a pre-treatment for the electrode material, aiming for carbothermic reduction of the valuable metals by the graphite contained in the waste. Leaching efficiencies above 70% were obtained for Li, Mn, Ni and Co after 60 min of leaching even when using 0.5 M sulfuric acid, which can be linked to the formation of more easily leachable compounds during the incineration process. When the incineration temperature was increased (600-700 degrees C), the intensity of graphite signals decreased and other oxides were identified, possibly due to the increase in oxidative conditions. Higher leaching efficiencies of Mn, Ni, Co, and Li were reached at lower temperatures of incineration (400- 500 degrees C) and at higher leaching times, which could be related to the partial carbothermic reduction of the metals. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
PDF https://doi.org/10.1016/j.wasman.2021.02.039

Similar Articles

ID Score Article
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
15043 Sethurajan, M; Gaydardzhiev, S Bioprocessing of spent lithium ion batteries for critical metals recovery - A review(2021)
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
24630 Peng, C; Liu, FP; Aji, AT; Wilson, BP; Lundström, M Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself(2019)
9511 Raj, B; Sahoo, MK; Nikoloski, A; Singh, P; Basu, S; Mohapatra, M Retrieving Spent Cathodes from Lithium-Ion Batteries through Flourishing Technologies(2023)Batteries & Supercaps, 6.0, 1
18872 Rinne, M; Aromaa-Stubb, R; Elomaa, H; Porvali, A; Lundstroem, M Evaluation of hydrometallurgical black mass recycling with simulation-based life cycle assessment(2024)International Journal Of Life Cycle Assessment, 29.0, 9
29586 Makuza, B; Tian, QH; Guo, XY; Chattopadhyay, K; Yu, DW Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review(2021)
22876 Iturrondobeitia, M; Vallejo, C; Berroci, M; Akizu-Gardoki, O; Minguez, R; Lizundia, E Environmental Impact Assessment of LiNi1/3M1/3C1/3O2 Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries(2022)Acs Sustainable Chemistry & Engineering, 10.0, 30
Scroll