Knowledge Agora



Similar Articles

Title Sugarcane Biowaste-Derived Biochars as Capacitive Deionization Electrodes for Brackish Water Desalination and Water-Softening Applications
ID_Doc 12462
Authors Lado, JJ; Zornitta, RL; Rodríguez, IV; Barcelos, KM; Ruotolo, LAM
Title Sugarcane Biowaste-Derived Biochars as Capacitive Deionization Electrodes for Brackish Water Desalination and Water-Softening Applications
Year 2019
Published Acs Sustainable Chemistry & Engineering, 7.0, 23
Abstract The sugarcane ethanol industry is currently generating an intensive amount of biowaste while consuming significant water resources. In this work, sugarcane bagasse fly ash (SCBFA), a major biowaste with high amounts of fixed carbon, is employed as a precursor for activated carbon (SCBFA-AC) production. Here, SCBFA-ACs are valorized as the main component of carbon electrodes employed in capacitive deionization (CDI), an emerging desalination technology. In this way, an abundant and low-cost biowaste could be used as a green alternative to treat the water. Different activation methods of SCBFA were explored obtaining SCBFA-AC with a broad spectrum of structural and chemical properties. The electrochemical characterization of SCBFA-AC showed the positive impact of large surface areas, good combination of micro- and mesopores, and the presence of surface functional groups on specific capacitances (117 F g(-1)). Subsequently, CDI and membrane CDI experiments showed the importance of ion-exchange membranes on improving charge efficiency values (from 5-30 to 80-95%) and consequently, salt adsorption capacity, SAC, from approximate to 5 to 22 mg g(-1). This SAC value, one of the highest ever obtained with biowaste electrodes, only suffered a slight reduction (19 mg g(-1)) after 70 CDI cycles. Finally, SCBFA electrodes were successfully tested for water-softening applications, reaching 15 mg g(-1) when operating using CaCl2 solutions instead of NaCl. This study represents a great example of the water-energy-food nexus in the framework of the circular economy.
PDF

Similar Articles

ID Score Article
14376 Brandao, ATSC; State, S; Costa, R; Potorac, P; Vázquez, JA; Valcarcel, J; Silva, AF; Anicai, L; Enachescu, M; Pereira, CM Renewable Carbon Materials as Electrodes for High-Performance Supercapacitors: From Marine Biowaste to High Specific Surface Area Porous Biocarbons(2023)Acs Omega, 8, 21
3601 Ramírez, A; Muñoz-Morales, M; López-Fernández, E; Fernández-Morales, FJ; Llanos, J Advancing circular economy: Critical insights into waste biomass derived carbon electrodes for (bio) electrochemical water treatment(2024)
7812 Ganesan, V; Mohammed, SN; Mohamed, MSBK An insight on the development of functional carbon electrodes from plastic waste for capacitive deionization towards sustainable water reclamation(2023)Water And Environment Journal, 37, 4
12159 Alcaraz, L; Adán-Más, A; Arévalo-Cid, P; Montemor, MD; López, FA RETRACTED: Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors (Retracted article. See vol. 11, 2023)(2020)
29482 Qu, Y; Xu, L; Chen, Y; Sun, SK; Wang, Y; Guo, LM Efficient toluene adsorption/desorption on biochar derived from in situ acid-treated sugarcane bagasse(2021)Environmental Science And Pollution Research, 28.0, 44
28772 Kalyani, P; Banuprabha, TR; Velkannan, V Activated carbon from banyan prop root biomass and its application in pseudocapacitors: a strategy towards circular economy for energy(2021)Ionics, 27.0, 3
26987 Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application(2024)
26400 Pal, B; Yasin, A; Sunil, V; Sofer, Z; Yang, CC; Jose, R Enhancing the materials circularity: from laboratory waste to electrochemical capacitors(2022)
Scroll