Knowledge Agora



Similar Articles

Title Process development and techno-economic analysis for mechanochemical recycling of poly(ethylene terephthalate)
ID_Doc 12478
Authors Anglou, E; Ganesan, A; Golabek, KM; Chang, YC; Fu, Q; Bradley, W; Jones, CW; Sievers, C; Nair, S; Boukouvala, F
Title Process development and techno-economic analysis for mechanochemical recycling of poly(ethylene terephthalate)
Year 2024
Published
Abstract Chemical recycling of consumer plastics has garnered great attention recently towards achieving circular economy goals. Particularly in the case of PET waste, mechanochemical depolymerization in ball mill reactors has been identified as a very promising technology due to the high conversion rates achieved under mild conditions. While the absence of solvents in the reaction mixture reduces significant separation costs, mechanochemical depolymerization still presents challenges with respect to the efficient separation and purification of monomers. Thus, meticulous experiments, process modeling, and simulations are essential for demonstrating the separation and purification of monomers. In this study, we present the lab-scale separation process flow for the recovery of terephthalic acid (TPA) and ethylene glycol (EG) from mechanochemically depolymerized polyethylene terephthalate (PET). We additionally examine the use recycling of ideal PET powder and commercial samples (e.g., PET fibers, bottles, and food containers) as feedstocks. The process parameters are optimized to achieve 97 %+ of monomer recovery with 99 %+ purity. The complete recovery of EG, and recycling of process water enables a 'zero-liquid discharge' process design. Subsequently, we conduct a techno-economic analysis (TEA) to evaluate the economic potential of the proposed sequence, which resulted in a positive net present value (NPV) for the different scenarios and a minimum selling price (MSP) of $0.99/kg. Finally, we compare the economic potential of mechanochemical recycling of PET to fossil-based production and other recycling methodologies based on economic metrics.
PDF

Similar Articles

ID Score Article
27476 McNeeley, A; Liu, YA Assessment of PET Depolymerization Processes for Circular Economy. 1. Thermodynamics, Chemistry, Purification, and Process Design(2024)Industrial & Engineering Chemistry Research, 63.0, 8
9279 Uekert, T; DesVeaux, JS; Singh, A; Nicholson, SR; Lamers, P; Ghosh, T; McGeehan, JE; Carpenter, AC; Beckham, GT Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling(2022)Green Chemistry, 24.0, 17
28305 Enache, AC; Grecu, I; Samoila, P Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles(2024)Materials, 17.0, 12
22015 Caputto, MDD; Navarro, R; Valentín, JL; Marcos-Fernández, A Chemical upcycling of poly(ethylene terephthalate) waste: Moving to a circular model(2022)Journal Of Polymer Science, 60.0, 24
14355 Chaudhari, US; Kulas, DG; Peralta, A; Hossain, T; Johnson, AT; Hartley, DS; Handler, RM; Reck, BK; Thompson, VS; Watkins, DW; Shonnard, DR Solvent based dissolution-precipitation of waste polyethylene terephthalate: economic and environmental performance metrics(2023)Rsc Sustainability, 1, 7
22466 McNeeley, A; Liu, YA Assessment of PET Depolymerization Processes for Circular Economy. 2. Process Design Options and Process Modeling Evaluation for Methanolysis, Glycolysis, and Hydrolysis(2024)Industrial & Engineering Chemistry Research, 63.0, 8
24389 Biermann, L; Brepohl, E; Eichert, C; Paschetag, M; Watts, M; Scholl, S Development of a continuous PET depolymerization process as a basis for a back-to-monomer recycling method(2021)Green Processing And Synthesis, 10, 1
25296 Uekert, T; Singh, A; DesVeaux, JS; Ghosh, T; Bhatt, A; Yadav, G; Afzal, S; Walzberg, J; Knauer, KM; Nicholson, SR; Beckham, GT; Carpenter, AC Technical, Economic, and Environmental Comparison of Closed- Loop Recycling Technologies for Common Plastics(2023)Acs Sustainable Chemistry & Engineering, 11, 3
14289 Sabde, S; Yadav, GD; Narayan, R Conversion of waste into wealth in chemical recycling of polymers: Hydrolytic depolymerization of polyethylene terephthalate into terephthalic acid and ethylene glycol using phase transfer catalysis(2023)
6476 Brivio, L; Tollini, F PET recycling: Review of the current available technologies and industrial perspectives(2022)
Scroll