Knowledge Agora



Similar Articles

Title Biosorption of methylene blue by residue from Lentinus crinitus mushroom cultivation
ID_Doc 12536
Authors de Freitas, JDS; Bertéli, MBD; Neto, JC; Gasparotto, ES; Gonçalves, AC; do Valle, JS; Otero, DM; Linde, GA; Ribeiro, CDF; Caetano, J; Dragunski, DC; Colauto, NB
Title Biosorption of methylene blue by residue from Lentinus crinitus mushroom cultivation
Year 2023
Published World Journal Of Microbiology & Biotechnology, 39.0, 5
Abstract Conventional textile effluent treatments cannot remove methylene blue, a mutagenic azo dye, and an endocrine disruptor, that remains in the drinking water after conventional water treatment. However, the spent substrate from Lentinus crinitus mushroom cultivation, a waste, could be an attractive alternative to remove persistent azo dyes in water. The objective of this study was to assess the methylene blue biosorption by spent substrate from L. crinitus mushroom cultivation. The spent substrate obtained after mushroom cultivation had been characterized by the point of zero charge, functional groups, thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Moreover, the spent substrate biosorption capacity was determined in function of pH, time, and temperature. The spent substrate had a point of zero charge value of 4.3 and biosorbed 99% of methylene blue in pH from 3 to 9, with the highest biosorption in the kinetic assay of 15.92 mg g(- 1), and in the isothermal assay of 120.31 mg g(- 1). Biosorption reached equilibrium at 40 min after mixing and best fitted the pseudo-second-order model. Freundlich model best fitted the isothermal parameters and each 100 g spent substrate biosorbed 12 g dye in an aqueous solution. The spent substrate of L. crinitus cultivation is an effective biosorbent of methylene blue and an alternative to removing this dye from water, adding value to the mushroom production chain, and supporting the circular economy.
PDF

Similar Articles

ID Score Article
15302 Qaiyum, MA; Sahu, PR; Samal, PP; Dutta, S; Dey, B; Dey, S Towards a win-win chemistry: extraction of CI orange from Kamala fruit (Mallotus philippensis), and simultaneous exercise of its peels for the removal of Methylene Blue from water(2023)International Journal Of Phytoremediation, 25, 7
25081 Shah, AJ; Soni, B; Karmee, SK Locally available agroresidues as potential sorbents: modelling, column studies and scale-up(2021)Bioresources And Bioprocessing, 8, 1
24790 Sulthana, R; Taqui, SN; Kumari, HND; Mir, RA; Syed, AA; Saad, HM; Bashir, MN; Fouad, Y; Jathar, L; Shelare, S Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies(2024)
Scroll