Knowledge Agora



Similar Articles

Title Preparation of Green Sustainable Cement Paste Mixture Based on Inorganic Additives: An Experimental and Modelling Approach
ID_Doc 12589
Authors Mahmood, A; Pechociaková, M; Noman, MT; Waclawek, S; Gheibi, M; Behzadian, K; Militky, J
Title Preparation of Green Sustainable Cement Paste Mixture Based on Inorganic Additives: An Experimental and Modelling Approach
Year 2024
Published Buildings, 14.0, 7
Abstract Using waste materials in the mixture of building materials is an approach aligned with the circular economy, a viewpoint that creates sustainable building industries, especially in developed countries. This study concentrated on the application of laponite (LAP), fly ash (FA), and bentonite (BENT) materials in the mixture of cement pastes. The first step used experimental practices to examine the metrics of toughness, three-point bending, and compressive strength with different percentages of added LAP, FA, and BENT after the characterization of samples by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The next step entailed assessment of cement paste specifications through some regressive equations obtained by the application of 2D curve fitting and sensitive analysis of additive (FA, LAP, and BENT) fluctuations in the structure of cement paste. The results show that linear polynomial equations are the best for the evaluation of cement paste terms as per different percentages of the additives. The environmental impact assessment (EIA) of nine prepared samples demonstrated that LAP created the safest condition in comparison to others. However, the ordered weighted averaging (OWA) computations applied for the sustainability assessment (SA) of the samples showed that the LAP is the most appropriate option for use in the structure of cement paste. Using experimental analysis and mathematical modeling, the behavior of cement paste interacting with mineral additives is evaluated. Sustainable mixtures are then presented based on EIA.
PDF https://www.mdpi.com/2075-5309/14/7/1922/pdf?version=1719136872

Similar Articles

ID Score Article
28335 Martínez-Martínez, S; Pérez-Villarejo, L; Eliche-Quesada, D; Sánchez-Soto, PJ New Types and Dosages for the Manufacture of Low-Energy Cements from Raw Materials and Industrial Waste under the Principles of the Circular Economy and Low-Carbon Economy(2023)Materials, 16.0, 2
21337 Caneda-Martínez, L; Monasterio, M; Moreno-Juez, J; Martínez-Ramírez, S; García, R; Frías, M Behaviour and Properties of Eco-Cement Pastes Elaborated with Recycled Concrete Powder from Construction and Demolition Wastes(2021)Materials, 14.0, 5
12140 Moreno, S; Rosales, M; Rosales, J; Agrela, F; Díaz-López, JL Feasibility of Using New Sustainable Mineral Additions for the Manufacture of Eco-Cements(2024)Materials, 17.0, 4
13339 Frías, M; Moreno-Reyes, AM; de la Villa, RV; García, R; Martínez-Ramírez, S; Moreno, J; Oleaga, A Advances in the understanding of alkaline waste materials as potential eco-pozzolans: Characterisation, reactivity and behaviour(2024)
21838 Fonseca, M; Matos, AM 3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities(2023)Materials, 16.0, 6
7891 Frías, M; Martínez-Ramírez, S; de la Villa, RV; Fernández-Carrasco, L; García, R Reactivity in cement pastes bearing fine fraction concrete and glass from construction and demolition waste: Microstructural analysis of viability(2021)
8334 Corbu, O; Puskas, A; Dragomir, ML; Har, N; Toma, IO Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM)(2023)Coatings, 13.0, 10
9525 Le, HB; Bui, QB; Tang, LP Geopolymer Recycled Aggregate Concrete: From Experiments to Empirical Models(2021)Materials, 14.0, 5
14507 Baggio, TF; Possan, E; Andrade, JJD Physical-chemical characterization of construction and demolition waste powder with thermomechanical activation for use as supplementary cementitious material(2024)
Scroll