Knowledge Agora



Similar Articles

Title Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction
ID_Doc 12650
Authors Mlonka-Medrala, A; Sieradzka, M; Magdziarz, A
Title Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction
Year 2022
Published
Abstract Solid fraction obtained from anaerobic digestion of municipal solid waste organic fraction is a waste produced in noticeable amounts, which according to circular economy concept can be upgraded to produce new, value-added products like: hydrogen rich process gas and carbon rich solid material. In this study, thermal upgrading of hydrochar by steam gasification was analysed. Raw material was obtained through hydrothermal carbonization (HTC) of digestate from anaerobic digestion of wet fraction of municipal solid waste at 200 and 230 ?, and residence time of 60 and 120 min. The further gasification step was carried out at 800 ? and the residence time was 10 min under nitrogen with a steam atmosphere. The main objective of hydrochar upgrading through steam gasification was production of carbon-rich material with developed active surface area. The study presented promising results regarding proper management of mixed wastes, which have not yet been analysed in the literature. It was noted that low temperature and residence time are favouring active surface area development. Analysis of the main gaseous products of the gasification process showed that syngas is composed mainly of H-2, CH4, CO2, O-2, and CO. The hydrogen concentration was the highest noted for hydrochar obtained at highest temperature and residence time. Analysis of the concentration of each syngas component reveals that combined treatment of digestate from anaerobic digestion through the HTC and gasification process results in H2-rich syngas products and a high H2/CO ratio with parallel fair quality activated carbon.
PDF

Similar Articles

ID Score Article
6081 Sharma, HB; Panigrahi, S; Sarmah, AK; Dubey, BK Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept(2020)
10800 Wu, L; Wei, W; Wang, DB; Ni, BJ Improving nutrients removal and energy recovery from wastes using hydrochar(2021)
12274 Xypolias, P; Vakalis, S; Daskaloudis, I; Lekkas, DF Hydrothermal Carbonization of Dry Anaerobic Digestion Residues Derived from Food and Agro Wastes in Lesvos Island(2023)Energies, 16.0, 12
3938 Sharma, HB; Panigrahi, S; Dubey, BK Food waste hydrothermal carbonization: Study on the effects of reaction severities, pelletization and framework development using approaches of the circular economy(2021)
18388 Ischia, G; Fiori, L; Gao, LH; Goldfarb, JL Valorizing municipal solid waste via integrating hydrothermal carbonization and downstream extraction for biofuel production(2021)
3639 Dhull, SB; Rose, PK; Rani, J; Goksen, G; Bains, A Food waste to hydrochar: A potential approach towards the Sustainable Development Goals, carbon neutrality, and circular economy(2024)
9156 Rasaq, WA; Thiruchenthooran, V; Wirkijowska, K; Valentin, M; Bobak, L; Igwegbe, CA; Bialowiec, A Hydrothermal carbonization of combined food waste: A critical evaluation of emergent products(2024)
10743 Mahata, S; Periyavaram, SR; Akkupalli, NK; Srivastava, S; Matli, C A review on Co-Hydrothermal carbonization of sludge: Effect of process parameters, reaction pathway, and pollutant transport(2023)
18647 Raheem, A; He, Q; Ding, L; Dastyar, W; Yu, GS Evaluating performance of pyrolysis and gasification processes of agriculture residues-derived hydrochar: Effect of hydrothermal carbonization(2022)
12423 Sarrion, A; Medina-Martos, E; Iribarren, D; Diaz, E; Mohedano, AF; Dufour, J Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste(2023)
Scroll