Knowledge Agora



Similar Articles

Title Evaluation of Waste Blends with Sewage Sludge as a Potential Material Input for Pyrolysis
ID_Doc 12658
Authors Kubonova, L; Janakova, I; Malikova, P; Drabinova, S; Dej, M; Smelik, R; Skalny, P; Heviankova, S
Title Evaluation of Waste Blends with Sewage Sludge as a Potential Material Input for Pyrolysis
Year 2021
Published Applied Sciences-Basel, 11.0, 4
Abstract In line with the requirements of the circular economy, the European Union's waste management legislative changes also concern the treatment of sewage sludge. Although sewage sludge production cannot be prevented, its quantities may be reduced by the synergetic effect of energy recovery via choosing a proper technology. Sewage sludge is difficult to apply as fuel alone, because of its high moisture and ash content. However, its energy use will be increased by adding suitable waste materials (different types of plastics, waste tires and paper rejects). Most recently, the thermal utilization of sewage sludge via incineration or pyrolysis has grown in importance. This article describes the fuel parameters of particular waste materials and of their blends with sewage sludge in connection with laboratory-scale thermal decomposition in an inert atmosphere, for their potential use in a semi-pilot plant pyrolysis unit. For pyrolytic application, the results of thermogravimetric analysis are needed in order to know the maximal temperature of thermal decomposition in an inert atmosphere, maximal mass losses, and weight loss rates. The samples of different thermoplastics mixed with sewage sludge, and low-density polyethylene blends with sewage sludge, had the lowest residual masses (70-74%) and the highest weight loss rates (11-19%/min). On the other hand, the blend of polyester rejects from tire processing, paper rejects and sewage sludge had the second highest residual mass (60%) and the lowest weight loss rate (3%/min).
PDF https://www.mdpi.com/2076-3417/11/4/1610/pdf?version=1612955875

Similar Articles

ID Score Article
25280 Kwapinska, M; Horvat, A; Agar, DA; Leahy, JJ Energy recovery through co-pyrolysis of wastewater sludge and forest residues - The transition from laboratory to pilot scale(2021)
2591 Tsybina, A; Wuensch, C Analysis Of Sewage Sludge Thermal Treatment Methods In The Context Of Circular Economy(2018)
12492 Özdemir, A; Özkan, A; Günkaya, Z; Banar, M Co-pyrolysis of municipal solid waste and municipal sewage sludge and characterization of liquid product(2022)Pamukkale University Journal Of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi, 28.0, 6
15733 Recko, K Production of Alternative Fuels Based on Municipal Sewage Sludge and Selected Types of ELV Waste(2022)Energies, 15, 16
23960 Husek, M; Mosko, J; Pohorely, M Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art(2022)
27990 Trabelsi, AB; Zaafouri, K; Friaa, A; Abidi, S; Naoui, S; Jamaaoui, F Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar(2021)Environmental Science And Pollution Research, 28.0, 8
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
8816 Swiechowski, K; Sygula, E; Koziel, JA; Stepien, P; Kugler, S; Manczarski, P; Bialowiec, A Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel-Process Efficiency and Fuel Properties of Carbonized Solid Fuel(2020)Data, 5.0, 2
17200 Gracida-Alvarez, UR; Benavides, PT; Lee, US; Wang, MC Life-cycle analysis of recycling of post-use plastic to plastic via pyrolysis(2023)
14201 Belone, MCL; Brosens, D; Kokko, M; Sarlin, E Effects of mesophilic and thermophilic anaerobic digestion of sewage sludge on different polymers: Perspectives on the potential of the treatment to degrade microplastics(2024)
Scroll