Knowledge Agora



Similar Articles

Title Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials
ID_Doc 12919
Authors Stampino, PG; Riva, L; Punta, C; Elegir, G; Bussini, D; Dotelli, G
Title Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials
Year 2021
Published Molecules, 26.0, 9
Abstract Nanocellulose-based materials are attracting an increasing interest for the positive role they could play in sustainable development; being originated from renewable resources. Moreover, cellulose has a high potential of recycling from both post-consumer waste and industrial waste. Both factors, i.e., recyclability and renewable resources; results are also extremely favourable in the perspective of circular economy. Despite all these positive aspects, an industrial production has yet to start. At the lab scale, many preparation methods of cellulose nanofibres (CNF) are available; here, the three most common are analysed: (1) enzymatic pre-treatment followed by homogenisation (ENZHO), (2) oxidative pre-treatment combined with homogenisation (TOHO) or (3) oxidative pre-treatment followed by sonication (TOSO). All three processes have been experimentally carried out starting from both virgin and recycled cellulose from industrial waste sludge. The environmental sustainability of these three routes is estimated by the Life Cycle Assessment (LCA) using experimental lab scale data. In this scenario, the comparative LCA has pointed out a superior performance of the ENZHO process, followed by TOHO and, lastly, by TOSO. The influence of energy consumption on the final results has been further investigated by a sensitivity analysis, showing that the TOHO and TOSO routes could reach similar performances by scaling-up the process from the laboratory. The different typology of CNF obtained by conducting the ENZHO process with respect to the TEMPO-mediated oxidation approach is also outlined as an additional element to be considered for the final selection of a suitable process.
PDF https://www.mdpi.com/1420-3049/26/9/2558/pdf?version=1619580566

Similar Articles

ID Score Article
18585 Rebec, KM; Turk, J; Kunaver, M Quantifying the environmental implication of cotton-Fiber-based Nanocrystalline cellulose: A life-cycle assessment(2024)
20565 Chia, MR; Phang, SW; Razali, NSM; Ahmad, I Approach towards sustainable circular economy: waste biorefinery for the production of cellulose nanocrystals(2024)Cellulose, 31, 6
9632 Dominic, CDM; Maheswary, S; Neenu, K; Sajadi, SM; Rosa, DD; Begum, PMS; Mathew, M; Ajithkumar, TG; Parameswaranpillai, J; George, TS; Resmi, VC; Ilyas, RA; Badawi, M Colocasia esculenta stems for the isolation of cellulose nanofibers: a chlorine-free method for the biomass conversion(2024)Biomass Conversion And Biorefinery, 14.0, 9
28818 Delgado-Aguilar, M; Tarrés, Q; Pèlach, MA; Mutjé, P; Fullana-i-Palmer, P Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products?(2015)Environmental Science & Technology, 49.0, 20
10378 Gil, A Current insights into lignocellulose related waste valorization(2021)
13131 Yu, YH; Guo, W; Qu, JJ; Wang, S; Wang, XG; He, Y; Yang, Y; He, Q; Liu, XD Preparation and characterization of dialdehyde cellulose nanocrystals from the waste nutshell(2023)
20793 Araujo, L; Machado, AR; Sousa, S; Ramos, OL; Ribeiro, AB; Casanova, F; Pintado, ME; Vieira, E; Moreira, P Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment(2023)Agriculture-Basel, 13, 10
9259 Sathasivam, T; Sugiarto, S; Yew, MPY; Oh, XY; Chan, SY; Chan, BQY; Tim, MJ; Kai, D Transforming textile waste into nanocellulose for a circular future(2024)Nanoscale, 16.0, 30
21186 Balea, A; Sanchez-Salvador, JL; Monte, MC; Merayo, N; Negro, C; Blanco, A In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production(2019)Molecules, 24.0, 9
10610 Gröndahl, J; Karisalmi, K; Vapaavuori, J Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications(2021)Soft Matter, 17, 43
Scroll