Knowledge Agora



Similar Articles

Title Biodiesel Production Systems: Reactor Technologies
ID_Doc 12925
Authors Müller, TE
Title Biodiesel Production Systems: Reactor Technologies
Year 2019
Published
Abstract The dwindling of fossil resources has prompted producers of fuels, fine chemicals, and polymers to switch from fossil carbon sources and search for renewable feedstock. Biomass holds one of the keys to this transition to a circular economy. In this context, biodiesel obtained by transesterification of natural oils with alcohols is gaining importance in the fuel sector. Various reactor concepts have been developed for the transesterification reaction. Depending on the scale of the biodiesel production plant, reactors with varying designs are operated in the batch, semi-batch mode, or continuously. In this chapter, the optimal reactor technologies are analyzed with respect to the stages the chemical conversion runs through. The initial reaction mixture of natural oil and methanol, the most common alcohol in biodiesel production, is characterized by a liquid-liquid two-phase system. The high polarity difference of natural oil and methanol leads to a mixability gap and formation of a natural oil-rich phase and a methanol-rich phase. The mass transfer of the reagents across the phase boundary is slow relative to the chemical reaction, thereby resulting in diffusion limitations. Various mixing technologies, such as sonication, and the use of microreactors are explored to overcome these diffusion limitations. Once the reaction is 15-20% complete, the reaction mixture becomes homogeneous, reducing the need for intensive mixing. As the reaction continues and higher conversions are obtained, the fatty acid methyl ester separates from glycerin. The two phases are separated and purified. Recent technologies for process intensification aim at enhancing mass and heat transfer at all stages of the reaction.
PDF

Similar Articles

ID Score Article
3186 Tulashie, SK; Alale, EM; Agudah, PQ; Osei, CA; Munumkum, CA; Gah, BK; Baidoo, EB A review on the production of biodiesel from waste cooking oil: a circular economy approach(2024)
25340 Rocha-Meneses, L; Hari, A; Inayat, A; Yousef, LA; Alarab, S; Abdallah, M; Shanableh, A; Ghenai, C; Shanmugam, S; Kikas, T Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production(2023)
14496 Carmona-Cabello, M; Sáez-Bastante, J; Pinzi, S; Dorado, MP Optimization of solid food waste oil biodiesel by ultrasound-assisted transesterification(2019)
21332 Praveena, V; Martin, LJ; Matijosius, J; Aloui, F; Pugazhendhi, A; Varuvel, EG A systematic review on biofuel production and utilization from algae and waste feedstocks- a circular economy approach(2024)
8048 Hönig, V; Pexa, M; Linhart, Z Biobutanol Standardizing Biodiesel from Waste Animal Fat(2015)Polish Journal Of Environmental Studies, 24, 6
9350 Damian, CS; Devarajan, Y; Jayabal, R A comprehensive review of the resource efficiency and sustainability in biofuel production from industrial and agricultural waste(2024)Journal Of Material Cycles And Waste Management, 26.0, 3
10797 Chilakamarry, CR; Sakinah, AMM; Zularisam, AW; Pandey, A; Vo, DVN Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review(2021)
23501 Kim, JH; Kim, M; Park, G; Kim, JY; Lee, J; Kwon, EE Advancement of biocrude valorization to fuels: A comprehensive review(2024)
12463 Barampouti, EM; Mai, S; Malamis, D; Moustakas, K; Loizidou, M Liquid biofuels from the organic fraction of municipal solid waste: A review(2019)
13851 Sanjana, J; Kumar, SPJ; Kumar, PN; Ramachandrudu, K; Jacob, S Coupled Production of Fatty Acid Alkyl Esters as Biodiesel and Fermentative Xylitol from Indian Palm (Elaeis guineensis Jacq.) Kernal Oil in a Biorefinery Loom(2024)
Scroll