Knowledge Agora



Similar Articles

Title The contribution of high-resolution GC separations in plastic recycling research
ID_Doc 13004
Authors Zanella, D; Romagnoli, M; Malcangi, S; Beccaria, M; Chenet, T; De Luca, C; Testoni, F; Pasti, L; Visentini, U; Morini, G; Cavazzini, A; Franchina, FA
Title The contribution of high-resolution GC separations in plastic recycling research
Year 2023
Published Analytical And Bioanalytical Chemistry, 415.0, 13
Abstract One convenient strategy to reduce environmental impact and pollution involves the reuse and revalorization of waste produced by modern society. Nowadays, global plastic production has reached 367 million tons per year and because of their durable nature, their recycling is fundamental for the achievement of the circular economy objective. In closing the loop of plastics, advanced recycling, i.e., the breakdown of plastics into their building blocks and their transformation into valuable secondary raw materials, is a promising management option for post-consumer plastic waste. The most valuable product from advanced recycling is a fluid hydrocarbon stream (or pyrolysis oil) which represents the feedstock for further refinement and processing into new plastics. In this context, gas chromatography is currently playing an important role since it is being used to study the pyrolysis oils, as well as any organic contaminants, and it can be considered a high-resolution separation technique, able to provide the molecular composition of such complex samples. This information significantly helps to tailor the pyrolysis process to produce high-quality feedstocks. In addition, the detection of contaminants (i.e., heteroatom-containing compounds) is crucial to avoid catalytic deterioration and to implement and design further purification processes. The current review highlights the importance of molecular characterization of waste stream products, and particularly the pyrolysis oils obtained from waste plastics. An overview of relevant applications published recently will be provided, and the potential of comprehensive two-dimensional gas chromatography, which represents the natural evolution of gas chromatography into a higher-resolution technique, will be underlined.
PDF https://link.springer.com/content/pdf/10.1007/s00216-023-04519-8.pdf

Similar Articles

ID Score Article
22570 Dunkle, MN; Pijcke, P; Winniford, WL; Ruitenbeek, M; Bellos, G Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV(2021)
19331 Kremer, I; Tomic, T; Katancic, Z; Erceg, M; Papuga, S; Vukovic, JP; Schneider, DR Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor(2021)
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
17823 Musivand, S; Bracciale, MP; Damizia, M; De Filippis, P; de Caprariis, B Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis(2023)Energies, 16, 13
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
15168 Shaker, M; Kumar, V; Saffron, CM; Rabnawaz, M Revolutionizing Plastics Chemical Recycling with Table Salt(2024)Advanced Sustainable Systems, 8, 1
13476 Chang, SH Plastic waste as pyrolysis feedstock for plastic oil production: A review(2023)
4067 Erkmen, B; Ozdogan, A; Ezdesir, A; Celik, G Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?(2023)Polymers, 15, 4
14484 Nabgan, W; Ikram, M; Alhassan, M; Owgi, AHK; Tran, TV; Parashuram, L; Nordin, AH; Djellabi, R; Jalil, AA; Medina, F; Nordin, ML Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste(2023)Arabian Journal Of Chemistry, 16, 6
Scroll