Knowledge Agora



Similar Articles

Title Consequential life-cycle assessment of treatment options for repulping reject from liquid packaging board waste treatment
ID_Doc 13006
Authors Khan, MMH; Havukainen, J; Niini, A; Leminen, V; Horttanainen, M
Title Consequential life-cycle assessment of treatment options for repulping reject from liquid packaging board waste treatment
Year 2023
Published
Abstract Liquid packaging board is one of the highly demanded packaging mediums for liquid food and beverages, generating substantial waste each year. Even though the fibre part of the liquid packaging board is recycled through a repulping process, the plastic and aluminium are usually used for energy recovery and as alternative raw materials in cement factories. This practice reduces the life span and economic value of plastic and aluminium, which does not fit within a circular economy. The plastic and aluminium from liquid packaging board waste can be recycled mechanically and chemically. This study used the consequential life-cycle assessment method to compare the environmental impact of the recovery options of rejected materials from liquid packaging board waste treatment. Four scenarios were established: (1) energy recovery by waste incineration, (2) composite pallet production by mechanical recycling, (3) plastic pallet production by mechanical recycling, and (4) plastic pallet production by chemical recycling. The study showed that when the consumed energy was supplied from renewable sources, plastic pallet production by mechanical recycling process had the lowest environmental impact, and energy recovery by waste incineration had the highest impact. A sensitivity analysis revealed that composite pallet production by mechanical recycling process showed the best impact if the energy was sourced from the average production mix, and plastic pallet production by chemical recycling had the lowest impact when mechanically recycled plastic substituted for 0%, 30%, and 50% of virgin plastic. These results should be of interest to liquid packaging board manufacturers and other related stakeholders.
PDF https://doi.org/10.1016/j.wasman.2022.10.026

Similar Articles

ID Score Article
13220 van Velzen, EUT; Jansen, M; Brouwer, MT; Feil, A; Molenveld, K; Pretz, T Efficiency Of Recycling Post-Consumer Plastic Packages(2017)
27253 Ferrara, C; Scarfato, P; Ferraioli, R; Apicella, A; Incarnato, L; De Feo, G Environmental sustainability assessment of different end-of-life scenarios for the pulper rejects produced in the paper recycling process(2023)
17262 Dahlbo, H; Poliakova, V; Mylläri, V; Sahimaa, O; Anderson, R Recycling potential of post-consumer plastic packaging waste in Finland(2018)
21899 Eriksen, MK; Christiansen, JD; Daugaard, AE; Astrup, TF Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling(2019)
24955 Faraca, G; Astrup, T Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability(2019)
25854 Eriksen, MK; Astrup, TF Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system(2019)
17052 Jeswani, H; Krüger, C; Russ, M; Horlacher, M; Antony, F; Hann, S; Azapagic, A Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery(2021)
17125 Civancik-Uslu, D; Puig, R; Ferrer, L; Fullana-i-Palmer, P Influence of end-of-life allocation, credits and other methodological issues in LCA of compounds: An in-company circular economy case study on packaging(2019)
15551 Yousef, S; Stasiulaitiene, I Life cycle assessment of recycling metallised food packaging plastics using mechanical, thermal and chemical processes(2024)Heliyon, 10, 16
3734 Meys, R; Frick, F; Westhues, S; Sternberg, A; Klankermayer, J; Bardow, A Towards a circular economy for plastic packaging wastes - the environmental potential of chemical recycling(2020)
Scroll