14387
|
|
Lee, KT; Du, JT; Chen, WH; Ubando, AT; Lee, KT Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation(2021) |
13429
|
|
Chen, WH; Du, JT; Lee, KT; Ong, HC; Park, YK; Huang, CC Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction(2021) |
9150
|
|
del Pozo, C; Rego, F; Yang, Y; Puy, N; Bartrolí, J; Fàbregas, E; Bridgwater, AV Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process(2021) |
28731
|
|
Zhang, X; Su, PJ; Wang, WC; Yang, WC; Ge, YY; Jiang, KL; Huang, JW Optimized carbonization of coffee shell via response surface methodology: A circular economy approach for environmental remediation(2024) |
13058
|
|
Carnier, R; Coscione, AR; de Abreu, CA; Melo, LCA; da Silva, AF Cadmium and lead adsorption and desorption by coffee waste-derived biochars(2022) |
3177
|
|
Ktori, R; Kamaterou, P; Zabaniotou, A Spent coffee grounds valorization through pyrolysis for energy and materials production in the concept of circular economy(2018)Materials Today-Proceedings, 5, 14 |
15004
|
|
Sousa, S; Duarte, E; Mesquita, M; Saraiva, S Energetic Valorization of Cereal and Exhausted Coffee Wastes Through Anaerobic Co-digestion With Pig Slurry(2021) |
22093
|
|
Lee, KT; Cheng, CL; Lee, DS; Chen, WH; Vo, DVN; Ding, L; Lam, SS Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel(2022) |
20461
|
|
Karmee, SK A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites(2018) |
28291
|
|
Fernández-Ferreras, J; Llano, T; Kochaniec, MK; Coz, A Slow Pyrolysis of Specialty Coffee Residues towards the Circular Economy in Rural Areas(2023)Energies, 16.0, 5 |