Knowledge Agora



Similar Articles

Title Application of whole-cell biosensors for analysis and improvement of L- and D-lactic acid fermentation by Lactobacillus spp. from the waste of glucose syrup production
ID_Doc 13074
Authors Augustiniene, E; Jonuskiene, I; Kailiuviene, J; Mazoniene, E; Baltakys, K; Malys, N
Title Application of whole-cell biosensors for analysis and improvement of L- and D-lactic acid fermentation by Lactobacillus spp. from the waste of glucose syrup production
Year 2023
Published Microbial Cell Factories, 22.0, 1
Abstract Background Lactic acid is one of the most important organic acids, with various applications in the food, beverage, pharmaceutical, cosmetic, and chemical industries. Optically pure forms of L- and D-lactic acid produced via microbial fermentation play an important role in the synthesis of biodegradable polylactic acid. Alternative substrates, including by-products and residues from the agro-food industry, provide a cost-effective solution for lactic acid production and are a promising avenue for the circular economy.Results In this study, the transcription factor (TF)-based whole-cell biosensor strategy was developed for the L- and D-lactic acid determination. It was cross validated with commonly used high-performance liquid chromatography and enzymatic methods. The utility of biosensors as an efficient analytical tool was demonstrated by their application for the lactic acid determination and fermentation improvement. We explored the ability of Lacticaseibacillus paracasei subsp. paracasei, Lactobacillus delbrueckii subsp. lactis, and Lactobacillus amylovorus to biosynthesize optically pure L-lactic acid, D-lactic acid or mixture of both from organic-rich residual fraction (ORRF), a waste of glucose syrup production from wheat starch. The fermentation of this complex industrial waste allowed the production of lactic acid without additional pretreatment obtaining yields from 0.5 to 0.9 Cmol/Cmol glucose.Conclusions This study highlights the utility of whole cell biosensors for the determination of L- and D-forms of lactic acid. The fermentation of L-lactic acid, D-lactic acid and mixture of both by L. paracasei, L. lactis, and L. amylovorus, respectively, was demonstrated using waste of glucose syrup production, the ORRF.
PDF https://microbialcellfactories.biomedcentral.com/counter/pdf/10.1186/s12934-023-02233-9

Similar Articles

ID Score Article
23192 Jodlowski, GS; Strzelec, E Use of glycerol waste in lactic acid bacteria metabolism for the production of lactic acid: State of the art in Poland(2021)Open Chemistry, 19, 1
25977 Montero-Zamora, J; Rojas-Vargas, MD; Barboza, N; López-Gómez, JP; Mora-Villalobos, JA; Redondo-Solano, M Potential of New Bacterial Strains for a Multiproduct Bioprocess Application: A Case Study Using Isolates of Lactic Acid Bacteria from Pineapple Silage of Costa Rican Agro-Industrial Residues(2022)Fermentation-Basel, 8, 8
8405 Cubas-Cano, E; González-Fernández, C; Ballesteros, M; Tomás-Pejó, E Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate(2018)Biofuels Bioproducts & Biorefining-Biofpr, 12.0, 2
27832 Costa, S; Summa, D; Semeraro, B; Zappaterra, F; Rugiero, I; Tamburini, E Fermentation as a Strategy for Bio-Transforming Waste into Resources: Lactic Acid Production from Agri-Food Residues(2021)Fermentation-Basel, 7.0, 1
12248 Mladenovic, D; Djukic-Vukovic, A; Stankovic, M; Milasinovic-Seremesic, M; Radosavljevic, M; Pejin, J; Mojovic, L Bioprocessing of agro-industrial residues into lactic acid and probiotic enriched livestock feed(2019)Journal Of The Science Of Food And Agriculture, 99.0, 12
26580 D'ambrosio, S; Zaccariello, L; Sadiq, S; D'Albore, M; Battipaglia, G; D'Agostino, M; Battaglia, D; Schiraldi, C; Cimini, D Grape Stalk Valorization: An Efficient Re-Use of Lignocellulosic Biomass through Hydrolysis and Fermentation to Produce Lactic Acid from Lactobacillus rhamnosus IMC501(2023)Fermentation-Basel, 9, 7
15396 Kanimozhi, NV; Sukumar, M Process optimization and kinetic modeling of ultrasound assisted lactic acid production(2024)Journal Of Food Process Engineering, 47, 8
25876 Martins, GN; Carboni, AD; Hugo, AA; Castilho, PC; Gómez-Zavaglia, A Chickpeas' and Lentils' Soaking and Cooking Wastewaters Repurposed for Growing Lactic Acid Bacteria(2023)Foods, 12, 12
15046 Aulitto, M; Fusco, S; Bartolucci, S; Franzén, CJ; Contursi, P Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate(2017)
17041 Gugel, I; Marchetti, F; Costa, S; Gugel, I; Baldini, E; Vertuani, S; Manfredini, S 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation(2024)Applied Microbiology And Biotechnology, 108, 1
Scroll