Knowledge Agora



Similar Articles

Title Optimisation of PET glycolysis by applying recyclable heterogeneous organocatalysts
ID_Doc 13137
Authors Fehér, Z; Kiss, J; Kisszékelyi, P; Molnár, J; Huszthy, P; Kárpáti, L; Kupai, J
Title Optimisation of PET glycolysis by applying recyclable heterogeneous organocatalysts
Year 2022
Published Green Chemistry, 24, 21
Abstract Chemical depolymerisation, or solvolysis, can be a sustainable plastic recycling method, as a circular economy can be achieved by recovering the pure monomers. Polyethylene terephthalate (PET) is a ubiquitous plastic material with short-life application and slow biodegradation, so its waste management needs to be continuously improved. In this study, we tested three commercially available organocatalyst-modified silica gels in the glycolysis of PET and developed another, functionalized with triazabicyclodecene (TBD), which was also tested. Organocatalysts are efficient in PET glycolysis, but their recyclability needs to be improved for industrial application. The applied heterogeneous modified silica gels can be recovered easily by filtration. Si-TEA catalyst was chosen for reaction optimisation because it has the highest thermal stability and good catalytic activity. The PET glycolysis process was optimised by fractional factorial experimental design and response surface methodology. Under optimal reaction conditions (PET (384 mg, 2 mmol), ethylene glycol (1.41 mL, 25.2 mmol), Si-TEA (15.5 mol%), 190 degrees C, 1.7 h), 88.5% non-isolated bis(2-hydroxyethyl) terephthalate (BHET) monomer yield was obtained. Si-TEA and Si-TBD catalysts were recycled in five reaction cycles, and with both catalysts, high cumulative BHET yields (89 and 88%, respectively) were achieved. Additionally, environmental energy impacts were calculated for the two catalysts and were compared favourably with other organocatalysts in the literature. A process scale-up was also implemented. Finally, it has been verified that modified silica gels have much higher catalytic activities than native silica gel, as solvolytic reactions using the former catalysts took a significantly shorter time.
PDF https://pubs.rsc.org/en/content/articlepdf/2022/gc/d2gc02860c

Similar Articles

ID Score Article
13704 Javed, S; Vogt, D Development of Eco-Friendly and Sustainable PET Glycolysis Using Sodium Alkoxides as Catalysts(2023)Acs Sustainable Chemistry & Engineering, 11, 31
22086 Conroy, S; Zhang, XL Theoretical insights into chemical recycling of polyethylene terephthalate (PET)(2024)
14289 Sabde, S; Yadav, GD; Narayan, R Conversion of waste into wealth in chemical recycling of polymers: Hydrolytic depolymerization of polyethylene terephthalate into terephthalic acid and ethylene glycol using phase transfer catalysis(2023)
19969 Damayanti; Wu, HS Strategic Possibility Routes of Recycled PET(2021)Polymers, 13.0, 9
28305 Enache, AC; Grecu, I; Samoila, P Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles(2024)Materials, 17.0, 12
14044 Kim, DH; Han, DO; Shim, KI; Kim, JK; Pelton, JG; Ryu, MH; Joo, JC; Han, JW; Kim, HT; Kim, KH One-Pot Chemo-bioprocess of PET Depolymerization and Recycling Enabled by a Biocompatible Catalyst, Betaine(2021)Acs Catalysis, 11, 7
14748 Badia, JD; Ballesteros-Garrido, R; Gamir-Cobacho, A; Gil-Castell, O; Cháfer, A Chemical recycling of post-consumer poly(ethylene terephthalate) (PET) driven by the protic ionic liquid 2-HEAA: Performance, kinetics and mechanism(2024)Journal Of Environmental Chemical Engineering, 12, 4
29189 Babaei, M; Jalilian, M; Shahbaz, K Chemical recycling of Polyethylene terephthalate: A mini-review(2024)Journal Of Environmental Chemical Engineering, 12.0, 3
15054 Javed, S; Fisse, J; Vogt, D Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide(2023)Polymers, 15, 3
9279 Uekert, T; DesVeaux, JS; Singh, A; Nicholson, SR; Lamers, P; Ghosh, T; McGeehan, JE; Carpenter, AC; Beckham, GT Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling(2022)Green Chemistry, 24.0, 17
Scroll