Knowledge Agora



Similar Articles

Title Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes
ID_Doc 13219
Authors Tampio, EA; Blasco, L; Vainio, MM; Kahala, MM; Rasi, SE
Title Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes
Year 2019
Published Global Change Biology Bioenergy, 11, 1
Abstract The potential of various biomasses for the production of green chemicals is currently one of the key topics in the field of the circular economy. Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and they can be produced in similar reactors as biogas to increase the productivity of a digestion plant, as VFAs have more varying end uses compared to biogas and methane. In this study, the aim was to assess the biogas and VFA production of food waste (FW) and cow slurry (CS) using the anaerobic biogas plant inoculum treating the corresponding substrates. The biogas and VFA production of both biomasses were studied in identical batch scale laboratory conditions while the process performance was assessed with chemical and microbial analyses. As a result, FW and CS were shown to have different chemical performances and microbial dynamics in both VFA and biogas processes. FW as a substrate showed higher yields in both processes (435 ml CH4/g VSfed and 434 mg VFA/g VSfed) due to its characteristics (pH, organic composition, microbial communities), and thus, the vast volume of CS makes it also a relevant substrate for VFA and biogas production. In this study, VFA profiles were highly dependent on the substrate and inoculum characteristics, while orders Clostridiales and Lactobacillales were connected with high VFA and butyric acid production with FW as a substrate. In conclusion, anaerobic digestion supports the implementation of the waste management hierarchy as it enables the production of renewable green chemicals from both urban and rural waste materials.
PDF https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcbb.12556

Similar Articles

ID Score Article
13482 Vazquez-Fernandez, A; Suarez-Ojeda, ME; Carrera, J Review about bioproduction of Volatile Fatty Acids from wastes and wastewaters: Influence of operating conditions and organic composition of the substrate(2022)Journal Of Environmental Chemical Engineering, 10, 3
29449 Valentino, F; Munarin, G; Biasiolo, M; Cavinato, C; Bolzonella, D; Pavan, P Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process(2021)Journal Of Environmental Chemical Engineering, 9.0, 5
13275 Esteban-Gutiérrez, M; Garcia-Aguirre, J; Irizar, I; Aymerich, E From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling(2018)
7745 Khatami, K; Atasoy, M; Ludtke, M; Baresel, C; Eyice, Ö; Cetecioglu, Z Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time(2021)
26464 Righetti, E; Nortilli, S; Fatone, F; Frison, N; Bolzonella, D A Multiproduct Biorefinery Approach for the Production of Hydrogen, Methane and Volatile Fatty Acids from Agricultural Waste(2020)Waste And Biomass Valorization, 11, 10
14827 Battista, F; Frison, N; Pavan, P; Cavinato, C; Gottardo, M; Fatone, F; Eusebi, AL; Majone, M; Zeppilli, M; Valentino, F; Fino, D; Tommasi, T; Bolzonella, D Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts(2020)Journal Of Chemical Technology And Biotechnology, 95, 2
12347 Duarte, MS; Fernandes, RJC; Pereira, C; Mesquita, DP; Alves, MM Influence of micro-aeration in the production of volatile fatty acids (VFA) from wastewaters with high salinity(2024)
24865 More, PP; Gore, S; Dargode, P; Sharma, MB; Lali, AM Volatile Fatty Acids (VFA) Production Through Altered Anaerobic Digestion (AD) Process for Efficient Utilization of Residual Liquid Stream of Pretreated Lignocellulosic Biomass(2022)Bioenergy Research, 15, 3
12528 Aboudi, K; Gómez-Quiroga, X; Alvarez-Gallego, CJ; Romero-García, LI Insights into Anaerobic Co-Digestion of Lignocellulosic Biomass (Sugar Beet By-Products) and Animal Manure in Long-Term Semi-Continuous Assays(2020)Applied Sciences-Basel, 10.0, 15
12527 Ramos-Suarez, M; Zhang, Y; Outram, V Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste(2021)Reviews In Environmental Science And Bio-Technology, 20.0, 2
Scroll