Knowledge Agora



Similar Articles

Title Microbial biomass production from enzymatically saccharified organic municipal waste and present microbial inhibitors
ID_Doc 13249
Authors Rudnyckyj, S; Chaturvedi, T; Thomsen, MH
Title Microbial biomass production from enzymatically saccharified organic municipal waste and present microbial inhibitors
Year 2024
Published
Abstract The study investigated the potential of the organic fraction of municipal solid waste (OFMSW) for microbial biomass production. The compositional analysis of OFMSW showed richness in sugars, proteins, lipids, organic acids, and ethanol, suggesting promising cheap cultivation feedstock if inhibitory compounds are sustainably detoxified. The enzymatic hydrolysis with Cellic (R) CTec3 and AMG (R) 300 L BrewQ (Novozymes A/S) demonstrated excellent saccharification of sugar polymer, reaching 92% glucan hydrolysis and 70% xylan hydrolysis. However, higher enzymatic dosages led to a rise in the total organic acids content, potentially causing increased microbial inhibition. Full hydrolysate and hydrolysate after solids removal were cultivated with seven robust microbial strains. Cultivation on hydrolysate with solids showed consumption of sugars and organic acids solely by commercial backer yeast Saccharomyces cerevisiae. Removal of solids from hydrolysate resulted in increased performance of tested strains, showing consumption of measured organic acids and ethanol by S. cerevisiae, Yarrowia lipolytica DSM 8218, and Cutaneotrichosporon oleaginosus ATCC 20509. Remarkably, the investigation of biomass production revealed superior cell mass formation and detoxification by S. cerevisiae, resulting in 18.9 g of biomass/L hydrolysate with 50% of crude protein (w/w) in shake flasks and 13.2 g/L of hydrolase with 46% of crude protein (w/w) in a 5-L bioreactor. Furthermore, bioreactor cultivation confirmed organic acids and ethanol conversion into biomass, highlighting S. cerevisiae's suitability for utilizing OFMSW for microbial biomass production. These findings contribute to advancements in biowaste-to-fodder conversion, promoting the development of a more sustainable circular economy.
PDF

Similar Articles

ID Score Article
13360 Mihajlovski, K; Buntic, A; Milic, M; Rajilic-Stojanovic, M; Dimitrijevic-Brankovic, S From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production(2021)Waste And Biomass Valorization, 12, 1
13839 Baptista, SL; Costa, CE; Cunha, JT; Soares, PO; Domingues, L Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates(2021)
7298 Singh, S; Chaturvedi, S; Syed, N; Rastogi, D; Kumar, P; Sharma, PK; Kumar, D; Sahoo, D; Srivastava, N; Nannaware, AD; Khare, SK; Rout, PK Production of fatty acids from distilled aromatic waste biomass using oleaginous yeast(2024)
15746 Vu, VNH; Kohari-Farkas, C; Filep, R; Laszlovszky, G; Ban, MT; Bujna, E; Gupta, VK; Nguyen, QD Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation(2023)Biofuel Research Journal-Brj, 10, 3
27397 Narisetty, V; Nagarajan, S; Gadkari, S; Ranade, V; Zhang, JX; Patchigolla, K; Bhatnagar, A; Awasthi, MK; Pandey, A; Kumar, V Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach(2022)
7118 Donzella, S; Serra, I; Fumagalli, A; Pellegrino, L; Mosconi, G; Lo Scalzo, R; Compagno, C Recycling industrial food wastes for lipid production by oleaginous yeasts Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum(2022)Biotechnology For Biofuels And Bioproducts, 15, 1
22339 Carsanba, E; Agirman, B; Papanikolaou, S; Fickers, P; Erten, H Valorisation of Waste Bread for the Production of Yeast Biomass by Yarrowia lipolytica Bioreactor Fermentation(2023)Fermentation-Basel, 9.0, 7
20081 Rodrigues, DM; da Silva, MF; de Mélo, AHF; Carvalho, PH; Baudel, HM; Goldbeck, R Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives(2024)
15412 Alhajeri, NS; Tawfik, A; Al-Fadhli, FM; Nasr, M Enhancing hydrogen production and biochar recovery from algal biomass: A novel techno-economic synergism with gelatinous digestate(2024)
13223 Ayodele, T; Alarape, K; Bello, IA; Tijani, A; Musiliu, L; Hammed, A Microbial Protein Production Using Lignocellulosic Biomass (Switchgrass) and Klebsiella oxytoca M5A1-A Nitrogen Fixer(2024)Sustainability, 16, 13
Scroll