Knowledge Agora



Similar Articles

Title Microbe assisted depolymerization of lignin rich waste and its conversion to gaseous biofuel
ID_Doc 13264
Authors Radhika, NL; Sachdeva, S; Kumar, M
Title Microbe assisted depolymerization of lignin rich waste and its conversion to gaseous biofuel
Year 2021
Published
Abstract Biomethanation potential of lignin rich residue (LRR) obtained from lignocellulosic ethanol fermentation was evaluated after subjecting to microbe assisted pretreatment using selectively enriched lignin depolymerizing consortia (LDC). The efficiency of LDC in lignin depolymerization was established using alkali and dealkali lignins (AL and DL) along with LRR as feedstocks. Microbial growth on media having lignin as sole carbon source, activity of lignin depolymerizing enzymes, viz., lignin peroxidase and laccase, ability of culture to decolorize the lignin mimicking dyes like methylene blue and ramezol brilliant blue, were considered to confirm the efficiency of enriched mixed culture. Microbial treatment using LDC showed significant positive impact on lignin breakdown irrespective of the substrate (LRR, 46.33%; AL, 31.37%; DL, 34.20%). The hydrolysate of LRR obtained from microbial pretreatment showed higher biogas yield (424 ml/g VS) owing to the efficiency of lignin depolymerization and availability of readily available biodegradable components in residual lignin from previous processing. Depolymerization of commercial lignins also produced a good amount of biogas (302-324 ml/g VS) after pretreatment with LDC. Overall, an additional energy conversion efficiency of about 11.75 kJ/g VS was obtained by valorizing the residual lignin through integrating biomethanation technology to ethanol fermentation. Outcome of this study indicated the feasibility of using lignin rich residue generated from the second generation cellulosic bioethanol plants as a potential feedstock to meet the current gaseous fuel demands. This integration also helps in closing the biomass based biorefinery loop and also promotes the circular economy.
PDF

Similar Articles

ID Score Article
1751 Garlapati, VK; Chandel, AK; Kumar, SPJ; Sharma, S; Sevda, S; Ingle, AP; Pant, D Circular economy aspects of lignin: Towards a lignocellulose biorefinery(2020)
20436 Dessie, W; Luo, XF; He, FL; Liao, YH; Qin, ZD Lignin valorization: A crucial step towards full utilization of biomass, zero waste and circular bioeconomy(2023)
4539 Gonzalez-Gonzalez, RB; Iqbal, HMN; Bilal, M; Parra-Saldivar, R (Re)-thinking the bio-prospect of lignin biomass recycling to meet Sustainable Development Goals and circular economy aspects(2022)
7822 Garedew, M; Lin, F; Song, B; DeWinter, TM; Jackson, JE; Saffron, CM; Lam, CH; Anastas, PT Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production(2020)Chemsuschem, 13, 17
14838 Song, GJ; Liu, L; Madadi, M; Elsayed, M; Sun, CH; Liu, QQ; Zhang, JH; Sun, FB; Ashori, A Integrated approach for co-production of bioethanol and light aromatics from lignocellulose through polyethylene glycol-aided acidic glycerol pretreatment(2024)
14037 Honarmandrad, Z; Kucharska, K; Gebicki, J Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management(2022)Molecules, 27, 21
15113 Carrillo-Nieves, D; Saldarriaga-Hernandez, S; Gutiérrez-Soto, G; Rostro-Alanis, M; Hernández-Luna, C; Alvarez, AJ; Iqbal, HMN; Parra-Saldívar, R Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste(2022)Biomass Conversion And Biorefinery, 12, 2
12484 Broda, M; Yelle, DJ; Serwanska, K Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions(2022)Molecules, 27.0, 24
29123 Kumar, P; Maharjan, A; Jun, HB; Kim, BS Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: Challenges and opportunities(2019)Biotechnology And Applied Biochemistry, 66.0, 2
24043 Cannatelli, MD; Ragauskas, AJ Laccase-mediated synthesis of lignin-core hyperbranched copolymers(2017)Applied Microbiology And Biotechnology, 101, 16
Scroll