Knowledge Agora



Similar Articles

Title From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling
ID_Doc 13275
Authors Esteban-Gutiérrez, M; Garcia-Aguirre, J; Irizar, I; Aymerich, E
Title From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling
Year 2018
Published
Abstract Volatile fatty acid (VFA) production through anaerobic fermentation may constitute an innovative solution for organic waste management within the context of circular economy. In the present study, the evolution of individual VFA during laboratory-scale fermentation of sewage sludge (SS), winery wastewater (Www) and meat and bone meal (MBM) was assessed, focusing on the effect of pH (5.5 and 10) and temperature (35 and 55 degrees C). Up-scaling of the fermentation process was evaluated in batch operation. The latter showed that specific VFA could be produced, giving similar individual evolution to lab-scale testing. To be precise, acetic acid percentage ranged within 30-65% and increased up to 5900 mg O-2 L-1 during SS fermentation at 55 degrees C and pH 9. In addition, 60% butyric acid was reached during Www acid fermentation at 55 degrees C, which corresponded to 6670 mg O-2 L-1 concentration in the fermentation broth. Regarding valeric acid, over 20% proportion and 2700 mg O-2 L-1 were reached in MBM acid fermentation at 35 degrees C. Finally, iso-valeric maximum level ranged within 15-17% in SS alkaline fermentation at 55 degrees C, which represented a concentration close to 2000 mg O-2 L-1. Interestingly, co-fermentation of agri-food waste and SS at thermophilic temperature and alkaline pH, boosted the VFA concentration 1.7-2 fold, which suggests that anaerobic co-fermentation of substrates from different nature could give promising outcomes in full-scale operation. (C) 2018 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
12527 Ramos-Suarez, M; Zhang, Y; Outram, V Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste(2021)Reviews In Environmental Science And Bio-Technology, 20.0, 2
13219 Tampio, EA; Blasco, L; Vainio, MM; Kahala, MM; Rasi, SE Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes(2019)Global Change Biology Bioenergy, 11, 1
13482 Vazquez-Fernandez, A; Suarez-Ojeda, ME; Carrera, J Review about bioproduction of Volatile Fatty Acids from wastes and wastewaters: Influence of operating conditions and organic composition of the substrate(2022)Journal Of Environmental Chemical Engineering, 10, 3
9661 Tayou, LN; Lauri, R; Incocciati, E; Pietrangeli, B; Majone, M; Micolucci, F; Gottardo, M; Valentino, F Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects(2022)
7745 Khatami, K; Atasoy, M; Ludtke, M; Baresel, C; Eyice, Ö; Cetecioglu, Z Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time(2021)
8258 Nagarajan, S; Jones, RJ; Oram, L; Massanet-Nicolau, J; Guwy, A Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids-A Perspective(2022)Fermentation-Basel, 8.0, 7
12347 Duarte, MS; Fernandes, RJC; Pereira, C; Mesquita, DP; Alves, MM Influence of micro-aeration in the production of volatile fatty acids (VFA) from wastewaters with high salinity(2024)
18249 Sillero, L; Solera, R; Pérez, M Effect of the hydraulic retention time on the acidogenic fermentation of sewage sludge, wine vinasse and poultry manure for biohydrogen production(2022)
29449 Valentino, F; Munarin, G; Biasiolo, M; Cavinato, C; Bolzonella, D; Pavan, P Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process(2021)Journal Of Environmental Chemical Engineering, 9.0, 5
7985 Chen, BY; Rupani, PF; Azman, S; Dewil, R; Appels, L A redox-based strategy to enhance propionic and butyric acid production during anaerobic fermentation(2022)
Scroll